
ESE532 Fall 2018

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2018 HW7: Restructuring for Accelerator Wednesday, October 17

Due: Friday, October 26, 5:00pm

So far, we have accelerated small kernels with straightforward mappings to hardware. In
this assignment, we will look at two applications that that require more effort, namely
the compression pipeline from homeworks 2, 3, and 4 and a digit recognition benchmark.
You can find the sources for this homework on the course website. We made a few small
modifications, but the code should look familiar. The data stream is here.

Collaboration

In this assignment, you work with partners that we assigned. You can find the assignment on
Canvas in the Partners map under the Files section. In the event that the partner assignment
does not work out, contact the instructor or TA as soon as possible. Partners may share
code and results and discuss analysis, but each writeup should be prepared independently.
Outside the assigned groups, only sharing of tool knowledge is allowed. See the course
policies on the course web page http://www.seas.upenn.edu/~ese532 for full details of
our policies for this course.

Homework Submission

1. Warmup

As we have seen so far, the Filter_SW function is by far the function that consumes
most of the clock cycles. However, its acceleration is also more complex than the other
functions, so we will start our endeavor more gently by mapping Differentiate_SW

first.

(a) Create a new Vivado HLS project and add the provided source files. Use a clock
period of 7 ns. Write a new function that invokes the hardware implementation
that you will write later, Differentiate_HW, and exits your program with a value
of 1 if the output is not correct. Verify that your test function works. Include the
function in your report.

(b) How many times does Differentiate_SW load each pixel on average? (3 lines)

(c) Can we use streaming in Differentiate_SW to handle arbitrary large frames?
Assume that we do not change the code except for adding pragmas and changing
the dimensions of the data. Motivate your answer. (1 line)

1

http://www.seas.upenn.edu/~ese532/fall2018/handouts/hw7_code.tar.gz
http://www.seas.upenn.edu/~ese532/fall2018/handouts/hw7_data.tar.gz
http://www.seas.upenn.edu/~ese532


ESE532 Fall 2018

(d) We could store pixels that are used multiple times in a buffer that is mapped to
a local memory. Assuming we still produce the output pixels in the same order,
what is the smallest buffer that we can use? Motivate your answer. (3 lines)

(e) In some iterations, we must write a value to the local memory and read multiple
values. An array is typically mapped on a BRAM, which has only two ports.
Consequently, we need more bandwidth than the BRAM offers. Give two ways in
which we could resolve this issue. (4 lines)

(f) Implement the function Differentiate_HW such that it loads the input pixels
only once and sequentially. Verify your code using your test function. Include the
Differentiate_HW function in your report.

(g) Pipeline the loop body of your implementation with an II of 1. What is the
latency that Vivado HLS predicts? You can ignore whether Vivado HLS meets
the clock period or not for now.

(h) On a microprocessor, branches are generally undesirable because they introduce
delays when they are predicted wrong. Why is this not a problem in an accelera-
tor?

2. Accelerating the Filter

In this part, we will accelerate Filter_SW.

(a) Does Filter_horizontal offer any opportunities for data reuse? Motivate your
answer. (3 lines)

(b) What is the optimal order for traversing the input data (column-wise or row-
wise)? Assume that the input and output are stored in a BRAM. Motivate your
answer. (3 lines)

(c) Create a function Filter_horizontal_HW that is a version of Filter_horizontal_SW
that you modified based on the insights from the previous two questions. You
don’t have to use the streams at this point. Include the code in your report.

(d) Pipeline the loop body of Filter_horizontal_HW. Verify your code using the test
function that you wrote. What is the latency that Vivado HLS predicts? You can
ignore whether Vivado HLS meets the clock period or not for now. (1 line)

(e) Let’s continue with accelerating Filter_vertical_HW. We could store pixels that
are used multiple times in a buffer that is mapped to a local memory. Assuming
we still produce the output pixels in the same order, what is the smallest buffer
that we can use? Motivate your answer. (3 lines)

(f) What is the optimal order for traversing the input data (column-wise or row-wise)
with respect to FPGA on-chip memory usage? Assume that the input and output
data are stored in a BRAM. Motivate your answer. (3 lines)

(g) Create a function Filter_vertical_HW that is a version of Filter_vertical_SW
that you modified based on the insights from the previous two questions. You
don’t have to use the streams yet. Include the code in your report.

2



ESE532 Fall 2018

(h) Pipeline the loop body of Filter_vertical_HW. Verify your code using the test
function that you wrote. What is the latency that Vivado HLS predicts? You can
ignore whether Vivado HLS meets the clock period or not for now. (1 line)

(i) Write a verification function for Filter_SW, similar to the one in question 1a.
Verify that your test function works. Include the function in your report.

(j) Create a function Filter_HW that connects both parts of the filter together. Store
the intermediate results in a local array. Include Filter_HW in your report. Use
the default data movers.

(k) What is the expected latency of Filter_HW? (1 line)

(l) We could replace the local array in Filter_HW with a stream. Assume that the
stream requires no resources for buffering. What impact do you expect that will
have on the resource consumption? Quantify your answer. (3 lines)

(m) Replace the local array with an hls::stream object and insert a dataflow

pragma into Filter_HW. The hls::stream class is declared in hls_stream.h

Modify the remaining functions as necessary. Note that you don’t have to inline
Filter_horizontal_HW and Filter_vertical_HW explicitly. The tool typically
inlines them automatically, or you can use the inline pragma to obtain the same
result. Include Filter_HW and any other significant changes in your report.

(n) What is the predicted latency of Filter_HW now? Make sure you verify your
code. (1 line)

(o) Import your code into SDx. Set the optimization level of the SDS++ compiler
to -O3. Add Differentiate_HW and Filter_HW as hardware functions and equip
both functions with access_pattern pragmas to inform the compiler that they
access data sequentially. Comment out the invocations of the hardware functions
that you used for verification because each invocation may result in an additional
accelerator instance. Note that commenting out a function that calls a hardware
function is not sufficient. Report the speedup of both accelerators (together).

(p) What is the speedup of the entire application?

The speedup of the acceleration is still poor with respect to the results of the vectorized
implementation. We haven’t exhausted all the restructuring and optimizations we
could potentially perform. It is worthwhile to think about what else you could do to
achieve a greater speedup.

3


