
ESE532 Fall 2018

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2018 Midterm Monday, October 22

• Exam ends at 11:50am; begin as instructed (target 10:30am)

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1a 1b 2a 2b 3ab 3c 4 5a 5b 5c 6 Total

7 8 5 5 6 4 15 15 5 15 15 100

warn collide is a typo for warn collision.

ostream[i] and tstream[i] should be ostream and tstream.

1

ESE532 Fall 2018

Consider the following code to track objects and predict potential collisions.

You want to consider warn collision as a separate thread that must execute at 100 frames
per second. So, it is called once every 10ms with a new image. For this exam, we are only
concerned with this warn collision task.

#define XMAX 1024

#define YMAX 1024

#define MAX_OBJECTS 1000

#define LOOKAHEAD 1000

#define XPOS 0

#define YPOS 1

#define WMIN -50

#define WMAX 50

#define MAXDIST 10000

#define OSIZE 30

uint16_t ocare[MAX_OBJECTS][OSIZE][OSIZE], oval[MAX_OBJECTS][OSIZE][OSIZE];

uint16_t dfx[MAX_OBJECTS], dfy[MAX_OBJECTS], x[MAX_OBJECTS], y[MAX_OBJECTS];

int speed[MAX_OBJECTS], angle[MAX_OBJECTS];

uint16_t collide[MAX_OBJECTS];

uint16_t collide_at_f[LOOKAHEAD][MAX_OBJECTS];

void findobj(uint16_t **image, int o, int gx, int gy, int result_xy[2]) {

for (int y=gy+WMIN; y<gy+WMAX; y++) // Loop A

for (int x=gx+WMIN; x<gx+WMAX; x++) { // Loop B

int dist=MAXDIST;

for (int i=0;i<OSIZE;i++) // Loop C

for (int j=0;j<OSIZE;j++) // Loop D

dist+=ocare[o][i][j]*abs(oval[o][i][j]-image[y+i][x+j]);

if (dist<bestdist) {

bestx=x; besty=y; bestdist=dist;

}

}

result_xy[XPOS]=bestx;

result_xy[YPOS]=besty;

}

int distance(int x1, int x2, int y1, int y2) {

int dx=x1-x2;

int dy=y1-y2;

return(sqrt(dx*dx+dy*dy));

}

// assume sin, cos, getangle, and sqrt

// can each be performed with 20 multiplies and 20 adds;

// critical path is 6 instructions long.

2

ESE532 Fall 2018

void warn_collisons(uint16_t image[XMAX][YMAX],

hls::stream<int> ostream, hls::stream<int> tstream) {

for (int i=0;i<omax;i++) // omax<MAX_OBJECTS // Loop E

collide[i]=LOOKAHEAD;

for (int f=0;f<LOOKAHEAD;f++) // Loop F

for (int i=0;i<omax;i++) collide_at_f[f][i]=LOOKAHEAD; // Loop G

int future[XMAX][YMAX];

for (int y=0;y<YMAX;x++) // Loop H

for (int x=0;x<XMAX;x++) future[y][x]=0; // Loop I

for (int i=0;i<omax;i++) { // Loop J

int newloc_guess_x=x[i]+dfx[i];

int newloc_guess_y=y[i]+dfy[i];

int xyloc[2];

findobj(image,i,newloc_guess_x,newloc_guess_y,xyloc);

speed[i]=distance(x[i],xyloc[XPOS],y[i],xyloc[YPOS]);

angle[i]=getangle(x[i],xyloc[XPOS],y[i],xyloc[YPOS]);

x[i]=xyloc[XPOS];

y[i]=xyloc[YPOS];

}

for (int i=0;i<omax;i++) { // Loop K

dfx[i]=speed[i]*cos(angle[i]);

dfy[i]=speed[i]*sin(angle[i]);

}

for (int f=0;f<LOOKAHEAD;f++) { // Loop L

for (int i=0;i<omax;i++) { // Loop M

int fx=x[i]+i*dfx[i]; int fy=y[i]+i*dfy[i];

future[fy][fx]++;

}

for (int i=0;i<omax;i++) { // Loop N

int fx=x[i]+i*dfx[i]; int fy=y[i]+i*dfy[i];

if (future[fy][fx]>1) collide_at_f[f][i]=f;

}

for (int i=0;i<omax;i++) { // Loop O

int fx=x[i]+i*dfx[i]; int fy=y[i]+i*dfy[i];

future[fy][fx]=0;

}

} // end of L

for (int i=0;i<omax;i++) { // Loop P

for (int f=0;f<LOOKAHEAD;f++) // Loop Q

collide[i]=min(collide[i],collide_at_f[f][i]);

for (int i=0;i<omax;i++) // Loop R

if (collide[i]!=LOOKAHEAD)

{ ostream[i].write(i); tstream[i].write(collide[i]); }

}

3

ESE532 Fall 2018

// used in a pipeline like:

while(true) {

getImage(image);

warn_collisions(image,collision_objects,collision_times);

steer(collision_objects,collision_times);

}

We start with a baseline, single processor system as shown.

64KB

P

local
scratchpad
memory

1
0

G
B

/s

8MB
Memory

• For simplicity throughout, we will treat non-memory indexing adds (subtracts count as
adds) and multplies as the only compute operations. We’ll assume the other operations
take negligible time or can be run in parallel (ILP) with the adds, multiplies, and mem-
ory operations. (Some consequences: You may ignore loop and conditional overheads
in processor runtime estimates; you may ignore computations in array indecies.)

• Baseline processor can execute one multiply or add per cycle and runs at 1 GHz.
• Data can be transfered from the 8MB main memory at 10 GB/s when streamed in

chunks of at least 256B.
• Non-streamed access to the main memory takes 5 cycles.
• Baseline processor has a local scratchpad memory that holds 64KB of data. Data can

be streamed into the local scratchpad memory at 10 GB/s. Non-streamed accesses to
the local scratchpad memory take 1 cycle.

• By default, all arrays (image, future, ocare, oval, x, y, speed, angle, dfx, dfy, collide,
collide at f) live in the main memory.

• Assume scalar (non-array) variables and xyloc can live in registers.
• Assume all additions are associative.
• Assume adds and multiplies take 1 ns when implemented in hardware accelerator, so

fully pipelined accelerators also run at 1 GHz.

4

ESE532 Fall 2018

1. Resource Bound

(a) Assuming the scalar processor can perform one add or one multiply on a cycle,
what is the compute resource bound in seconds for the time taken by warn collide?

E, F, G, H (no adds or multiplies here) 0

J:findobj MAX OBJECTS × (WMAX −WMIN)2 ×OSIZE2 × 3
3 for -, *, +
1000 × 1002 × 302 × 3 2.7 × 1010

J:not findobj MAX OBJECTS × (2 + 40 + 40 + 5) 87,000
K MAX OBJECTS × 2 × (40 + 1) 82,000
L LOOKAHEAD ×MAX OBJECTS × (5 + 4 + 4) 1.3 × 107

P (no adds or multiplies here) 0
R (no adds or multiplies here) 0

Total 2.7 × 1010

2.7×1010

109
=27 seconds

(b) Assuming all array data located in the 8MB memory by default can be streamed
at the full 10 GB/s rate, what is the memory resource bound in seconds for the
time taken by warn collide?

Here, we assume everything is streamed, so we count memory
operations on the data in arrays.

uint16 t

E MAX OBJECTS 1000
F LOOKAHEAD ×MAX OBJECTS 106

H YMAX ×XMAX 106

J:findobj MAX OBJECTS × (WMAX −WMIN)2 ×OSIZE2 × 3
3 for oval, ocare, image
1000 × 1002 × 302 × 3 2.7 × 1010

J:not findobj MAX OBJECTS × (10 + 2 × 2) 14,000
angle and speed are int instead of uint16 t, multiply by 2

K MAX OBJECTS × 6 6,000
L LOOKAHEAD ×MAX OBJECTS × (6 + 6 + 5) 1.7 × 107

P LOOKAHEAD ×MAX OBJECTS × 3 3 × 106

R MAX OBJECTS 1000

Total 2.7 × 1010

(2Bytes/uint16 t)×2.7×1010uint16 t

1010GB/s
=5.4 seconds

5

ESE532 Fall 2018

2. Amdahl’s Law

(a) Based on resource bound estimates, which outer loop is the bottleneck?

Circle One:

E F H J K L P R
Why?

J contains both the most data access and the most compu-
tational operations.

(b) Will accelerating the identified outer loop be sufficient to achieve the real-time
goal of 10 ms per invocation of warn collide? Explain why or why not.

No.
We can afford 107 cycles in the 10 ms budget.
We perform 13 M compute operations in L, which alone exceeds
the budget. We perform 4 M accesses to future in L that cannot
be streamed, accounting for 20 M cycles.

6

ESE532 Fall 2018

3. Parallelism in Loops

(a) Classify the following loops as data parallel or not? (loop bodies could be executed
concurrently)

(b) Explain why or why not?

Data

Loop Parallel? Why or why not?

J Y
Computation for every object is indepen-

dent.

L Y
Computation for every future (LOOKA-

HEAD) time step is independent.

M N
future[fx][fy] could change with ev-

ery object.

(c) Identify a loop or loop nest that performs data parallel operations followed by an
associative reduce.

Loop Reduce Operation

C,D add

A,B min

Q min

M could be considered an add-reduce in a very sophisti-
cated way. It would require effectively assuming there was a
future for object[YMAX][XMAX][MAX OBJECTS] array, com-
puting M data parallel for each object, then performing a
sum reduce over the object component for each y, x position
to get the future array that appears in the program.

7

ESE532 Fall 2018

4. Focusing on the computation, and assuming unlimited computing resources, what is
the latency bound for warn collide? (for this problem, assume min(a,b) takes 1 ns
just like add and multiply).

E, F, G, H define initial values 0
J newloc guess (both, parallel) 1

AB min reduce log2(1002) +14
CD sum reduce log2(302) +10
D body pipeline of 3 operations +3
speed and angle run in parallel
distance: subs in parallel, * in parallel, add, 6 for sqrt +9

K all objects in parallel
dfx and dfy in parallel
multiply, 6 for cos or sin critical path +7

L all iterations run concurrently
M fx, fy compuations all in parallel +2

serial future[fy][fx]++ +1000
(alternately reduce (see answer 3c)) (+10 instead)

N future[fy][fx] access must wait for M to complete
count 1 for test/assignment +1

O defining initial value of future for loop
P all objects run concurrently
Q min reduce log2(1000) + 10
R must put out in order

worst case, all collide +1000

Total 2057
or (reduce M case) (1067)

Latency Bound = 2.1µs (or 1.1µs)

8

ESE532 Fall 2018

(this page left mostly blank for pagination; can use for calculations or answers)

9

ESE532 Fall 2018

5. Accelerator

(a) Considering an accelerator target (e.g. FPGA mapping) for the bottleneck outer
loop (Problem 2a), which of its loops need to be pipelined and unrolled to achieve
the real-time goal of 10 ms per invocation of warn collide? If unrolled less than
completely, indicate the unroll factor.
Answer here likely assumes your solution to part (c); you will explain how you
support data movement in part (c).

Loop Unroll? Pipeline? II Comments

(factor)

C Y

D Y

A N Y 100

B N Y 1

J N Y 1002

findobj has 2.7×1010 cycles due to compute operations, but
we can only afford 107 to meet our 10 ms target. Unrolling C
and D gives us 3× 302 − 2700 operations, to bring findobj
down to 107 sequential cycles. Pipeline A, B allows us to
start one of the unrolled C-D computation and reduces per
cycle. Pipeline rest of J so can operate concurrently with
findobj accelerator task.
Pipelining J outside of findobj and including in accelerator
not strictly necessary. Could run as separate, concurrent
thread on a processor.

(b) How many adders and multipliers does this design contain?

Multipliers 1 × 302 + 1=901

Adders 2 × 302 + 1=1801

+1 for computations in J not in CD. Not necessary for 2
significant figures.

10

ESE532 Fall 2018

(c) What memory organization do you need to support the accelerator? Assume you
have 4KB, 2-port memory blocks (similar to BlockRAMs).

• What local memories do you need to allocate?

• What do these memories hold?

• What is the strategy for moving data into these local memories?

• How do these memories satisfy the data needs for the accelerator to operate as
identified above? (answer may involve describing what data lives in pipeline
registers as well)

• What bandwidth does this use from the main memory?

oval and ocare for a single object must be completely par-
titioned and placed in registers in order to support the C, D
unrolling.

findobj needs a (WMAX-WMIN+OSIZE)2 =1302 window of
the image in order to compute. We use OSIZE=30 local memo-
ries as line buffers (maybe 30-1) to hold lines reused in the C-D
window filter. We use 30 length 30 shift registers to hold reused
values as x increments. Together these provide the 900 image
pixels that the unrolled C, D datapath needs on every cycle.
With the line buffers and shift registers in place, the findobj
accelerator needs only one image pixel per cycle during opera-
tion.
To setup a findobj call, we need to send 2 × 2 × 302 bytes for
oval and ocare and 2×1302 for the image. 1800 bytes for each
of oval and ocare are larger than 256, so streamable. Each line
is 2 × 130 = 260 bytes, so also, independently streamable. We
need a total of 3,600+33,800=37,400 bytes for every object or
37M bytes every 10 ms, which is 3.7GB/s.

To hit the 10 ms goal with this unrolling, the accelerator must
run continuously. So, we must move the ocare and oval for
an invocation of findobj during the previous invocation. This
means we’ll need a second set of ocare, oval registers to shift
in and hold the new values during operation. Similarly, we must
move the first 30 lines of the image window during the previous
invocation. With care, it might be possible to use the same line
buffers, but a simpler solution would be another set of line buffers
for alternating invocations.

11

ESE532 Fall 2018

6. Assuming you use the accelerator from Problem 5 to accelerate the bottleneck loop,
how do you implement the remaining loops to achieve the real-time goal of 10 ms per
invocation of warn collide?

• Assume you can have any number of processors like the baseline processor, each
with their own pool of 8MB of memory.

• Assume you can have any number of vector processors that can perform 8 identical
operations in a cycle, als with their own pool of 8MB of memory.

– you can stream full vectors into the vector register file at the full streaming
rate for the memory

• Assume the vector processor is twice the size of the baseline processor.

• Assume the communication among processors, vector processors, and accelerator
is a single bus that can support one 10GB/s transfer at a time.

• Minimize the Hardware you use.

• Sample system with two baseline processors, two vector processors, and accelera-
tor shown below.

64KB

P

64KB

P

64KB

PVector P

64KB

PVector P

Accelerator

1
0
G

B
/s

 s
h

a
re

d
 b

u
s

Bus
Interface

8MB
Memory

8MB
Memory

8MB
Memory

8MB
Memory

(a) Summarize the number of processor of each type you use.

6 baseline processors

12

ESE532 Fall 2018

(b) Describe what loops (or portions of loops) run on which hardware.

Stragey: split L data parallel across all 6 processors. Run
rest on Processor 0.

seconds

E Processor 0 (2×1000)/(10GB/s) 2 × 10−7

F All processors for own portion (2(1000/6)×1000)/(10GB/s) 3.3 × 10−5

H All processors for own copy
(not really executed each time)

J (on accelerator)
K Processor 0 (82 + 4 × 5) × 1000 10−5

Processor 0 copy data for L (2 × 1024 × 1024 + 3 × 2 × 1000)/(10GB/s) 0.0002
L All processors (4 × 1000)/(10GB/s) (stream x, y, dfx, dfy) 4 × 10−6

(1000/6) × 1000 × (49) 0.0082
M(18): 2 × 5 for future,

4 x, y, dfx, dfy; 4 +, *
L(18): 2 × 5 for future, collide at f,

4 x, y, dfx, dfy; 4 +, *
O(13): 5 for future, 4 x, y, dfx, dfy; 4 +, *

P All processors with per (1000/6) × 1000 × (8) 0.0014
processor reduce 5 collide at f, 1 for each collide and min

Processor 0 stream back (5 × 1000 × 2)/(10GB/s) 10−6

per processor collide
P Processor 0 finish collide reduce 1000 × 6 × 8 0.0000048
R Processor 0 1000 × 3 (collide, ostream, tstream) 2 × 10−6

Total 0.0098562

9.9 ms just under 10 ms requirement.
(c) Describe when and how data is moved (to various memories for these processors).

• Clear E, F, and H as streaming operations. Setup 256B of

all zeros in the 64KB local memory (and 256B of LOOKA-

HEAD) and use streaming to copy over collide, collide at f.

• After K, stream image, x, y, dfx, dfy to other 5 proces-

sors.

• After L, stream per processor collide back to first pro-

cessor.

• Within each processor, stream x, y, dfx, dfy into 64KB

local memory for operation within L.

13

ESE532 Fall 2018

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a students performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another persons paper, article, or computer work and
submitting it for an assignment, cloning someone elses ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a students
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on ones resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another students efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for ones own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that students responsibility to consult with the instructor to clarify any
ambiguities.

14

