
1

Penn ESE532 Fall 2018 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 10: October 3, 2018
High Level Synthesis (HLS)

C-to-gates
Maybe: C-for-gates

Penn ESE532 Fall 2018 -- DeHon 2

Today
•  Motivation
•  Spatial Computations from C

specification
– Variables and expression (skip?)
– Simple Conditionals
– Loops
– Functions
– Arrays
– Memories

•  Complexities from C semantics

Message
•  C (or any programming language)

specifies a computation
•  Can describe spatial computation
•  Underlying semantics is sequential

– Watch for unintended sequentialization
– Write C for spatial differently than you write

C for processors

Penn ESE532 Fall 2018 -- DeHon 3

Coding Accelerators

•  Want to exploit FPGA logic on Zynq to
accelerate computations

•  Traditionally has meant develop
accelerators in
– Hardware Description Language (HDL)

•  E.g. Verilog ! undergrads see in CIS371
– Directly in schematics
– Generator language (constructs logic)

Penn ESE532 Fall 2018 -- DeHon 4

Course “Hypothesis”

•  C-to-gates synthesis mature enough to use
to specify hardware
– Leverage fact everyone knows C

•  (must, at least, know C to develop embedded code)

– Avoid taking time to teach Verilog or VHDL
•  Or making Verilog a pre-req.

– Focus on teaching how to craft hardware
•  Using the C already know
•  …may require thinking about the C differently

Penn ESE532 Fall 2018 -- DeHon 5

Discussion [open]

•  Is it obvious we can write C to describe
hardware?

•  What parts of C translate naturally to
hardware?

•  What parts of C might be problematic?
•  What parts of hardware design might be

hard to describe in C?

Penn ESE532 Fall 2018 -- DeHon 6

2

Three Perspectives
1.  How express spatial/hardware

computations in C
–  May want to avoid some constructs in C

2.  How express computations
–  Hopefully agnostic to spatial vs.

sequential
3.  Given C code: how could we

implement in spatial hardware
–  Some corner cases and technicalities

make tricky
Penn ESE532 Fall 2018 -- DeHon 7

Advantage

•  Use C for hardware and software
– Test out functionality entirely in software

•  Debug code before put on hardware where
harder to observe what’s happening

•  …without spending time in place and route

– Explore hardware/software tradeoffs by
targeting same code to either hardware or
software

Penn ESE532 Fall 2018 -- DeHon 8

Context

•  C most useful for describing behavior of
leaf operators

•  C alone doesn’t naturally capture task
parallelism

Penn ESE532 Fall 2018 -- DeHon 9

Preclass F

•  Ready for preclass f?

•  Skip to preclass f

Penn ESE532 Fall 2018 -- DeHon 10

Penn ESE532 Fall 2018 -- DeHon 11

C Primitives
Arithmetic Operators

•  Unary Minus (Negation) -a
•  Addition (Sum) a + b
•  Subtraction (Difference) a - b
•  Multiplication (Product) a * b
•  Division (Quotient) a / b
•  Modulus (Remainder) a % b

Things might have a hardware operator for…

Penn ESE532 Fall 2018 -- DeHon 12

C Primitives
Bitwise Operators

•  Bitwise Left Shift a << b
•  Bitwise Right Shift a >> b
•  Bitwise One's Complement ~a
•  Bitwise AND a & b
•  Bitwise OR a | b
•  Bitwise XOR a ^ b

Things might have a hardware operator for…

3

Penn ESE532 Fall 2018 -- DeHon 13

C Primitives
Comparison Operators

•  Less Than a < b
•  Less Than or Equal To a <= b
•  Greater Than a > b
•  Greater Than or Equal To a >= b
•  Not Equal To a != b
•  Equal To a == b
•  Logical Negation !a
•  Logical AND a && b
•  Logical OR a || b

Things might have a hardware operator for…
Penn ESE532 Fall 2018 -- DeHon 14

Expressions:
combine operators

•  a*x+b

A connected set of operators
 ! Graph of operators

*

+

a x
b

Penn ESE532 Fall 2018 -- DeHon 15

Expressions:
combine operators

•  a*x+b
•  a*x*x+b*x+c
•  a*(x+b)*x+c
•  ((a+10)*b < 100)

A connected set of operators
 ! Graph of operators

Penn ESE532 Fall 2018 -- DeHon 16

C Assignment

•  Basic assignment statement is:
 Location = expression
•  f=a*x+b

*

+

a x
b

f

Penn ESE532 Fall 2018 -- DeHon 17

Straight-line code

•  a sequence of assignments
•  What does this mean?

g=a*x;
h=b+g;
i=h*x;
j=i+c;

b c

*

a x

g
+ h

* i
+

j Penn ESE532 Fall 2018 -- DeHon 18

Variable Reuse
•  Variables (locations) define flow

between computations
•  Locations (variables) are reusable

t=a*x;
r=t*x;
t=b*x;
r=r+t;
r=r+c;

4

Penn ESE532 Fall 2018 -- DeHon 19

Variable Reuse
•  Variables (locations) define flow between

computations
•  Locations (variables) are reusable

t=a*x; t=a*x;
r=t*x; r=t*x;
t=b*x; t=b*x;
r=r+t; r=r+t;
r=r+c; r=r+c;

•  Sequential assignment semantics tell us
which definition goes with which use.
–  Use gets most recent preceding definition.

Penn ESE532 Fall 2018 -- DeHon 20

Dataflow

•  Can turn sequential
assignments into
dataflow graph through
def!use connections
t=a*x; t=a*x;
r=t*x; r=t*x;
t=b*x; t=b*x;
r=r+t; r=r+t;
r=r+c; r=r+c;

* *

*

+

+

a x b c

Penn ESE532 Fall 2018 -- DeHon 21

Dataflow Height

•  t=a*x; t=a*x;
r=t*x; r=t*x;
t=b*x; t=b*x;
r=r+t; r=r+t;
r=r+c; r=r+c;

•  Height (delay) of DF
graph may be less than #
sequential instructions.

* *

*

+

+

a x b c

Penn ESE532 Fall 2018 -- DeHon 22

Lecture Checkpoint

•  Happy with ?
– Straight-line code
– Variables

•  Graph for preclass f

Straight Line Code

•  C is fine for expressing straight-line
code and variables
– Has limited data types

•  Address with tricks like masking
•  Address with user-defined types

Penn ESE532 Fall 2018 -- DeHon 23 Penn ESE532 Fall 2018 -- DeHon 24

Optimizations can probably
expect compiler to do

•  Constant propagation: a=10; b=c[a];
•  Copy propagation: a=b; c=a+d; ! c=b+d;
•  Constant folding: c[10*10+4]; ! c[104];
•  Identity Simplification: c=1*a+0; ! c=a;
•  Strength Reduction: c=b*2; ! c=b<<1;
•  Dead code elimination
•  Common Subexpression Elimination:

–  C[x*100+y]=A[x*100+y]+B[x*100+y]
–  t=x*100+y; C[t]=A[t]+B[t];

•  Operator sizing: for (i=0; i<100; i++) b[i]=(a&0xff+i);

5

Conditionals

•  What can we do for simple
conditionals?

if (a<b)
res=b-a

Else
res=a-b

Penn ESE532 Fall 2018 -- DeHon 25 Penn ESE532 Fall 2018 -- DeHon 26

Simple Control Flow

•  If (cond) { … } else { …}

•  Assignments become conditional
•  In simplest cases (no memory ops),

can treat as dataflow node

cond

choose

then else

Penn ESE532 Fall 2018 -- DeHon 27

Simple Conditionals

if (a>b)
 c=b*c;
else
 c=a*c;

a>b b*c a*c

c

Penn ESE532 Fall 2018 -- DeHon 28

Simple Conditionals

v=a;
if (b>a)
 v=b;

•  If not assigned, value flows from before
assignment

b>a b a

v

Penn ESE532 Fall 2018 -- DeHon 29

Simple Conditionals
max=a;
min=a;
if (a>b)
 {min=b;
 c=1;}
else
 {max=b;
 c=0;}
•  May (re)define many values on each branch.

a>b b a

min

1 0

max c

Preclass G

•  Graph for preclass G
as mux-conversion?

Penn ESE532 Fall 2018 -- DeHon 30

6

Mux-Conversion and Real Time

•  How does mux conversion of
if/then/else interact with Real Time?

if (a)
 y=b;
else
 y=sqrt(b);

Penn ESE532 Fall 2018 -- DeHon 31

a b

sqrt

y

Function Call

•  What do we do with function calls?

Penn ESE532 Fall 2018 -- DeHon 32

Inline

int f(int a, int b)
return(sqrt(a*a+b*b));

for(i=0;i<MAX;i++)
D[i]=f(A[i],B[i]);

•  for(i=0;i<MAX;i++)
 D[i]=sqrt(A[i]*A[i]+B[i]*B[i]);

Penn ESE532 Fall 2018 -- DeHon 33

Functions provide descriptive convenience and compactness.
…but don’t need to force implementation.

Treat as data flow

•  Implement function
as an operation

•  Send arguments as
input tokens

•  Get result back as
token

Functions provide
potential division
between substrates?

Penn ESE532 Fall 2018 -- DeHon 34

Shared Function

Penn ESE532 Fall 2018 -- DeHon 35
Functions express shared operators.

Recursion?
int fib(int x) {

 if ((x==0) || (x==1))
return(1);

 else
return(fib(x-1)+fib(x-2))
;

}

•  In general won’t work.
–  Problem?

•  Smart compiler might
be able to turn some
cases into iterative
loop.

•  …but don’t count on it.
–  VivadoHLS will not

Penn ESE532 Fall 2018 -- DeHon 36

7

Loops…
•  From an express computation

standpoint, have several roles
– Compact code
– Unbounded computation

•  From describe hardware
– Compact expression of parallel hardware
– Express pipelines

•  Express hardware/software tradeoff

Penn ESE532 Fall 2018 -- DeHon 37

Loop Compact Expression

•  What express?
– Sequential, fully unrolled, partially unrolled?

Penn ESE532 Fall 2018 -- DeHon 38

Penn ESE532 Fall 2018 -- DeHon 39

Stream

•  Logical abstraction of a persistent point-
to-point communication link between
operators
– Has a (single) source and sink
– Carries data presence / flow control
– Provides in-order (FIFO) delivery of data

from source to sink

stream

Day 5

Penn ESE532 Fall 2018 -- DeHon 40

Stream

•  For the moment assume way to read
and write to streams:
– stream.read() – return next value on

stream
– stream.write(val); put val onto stream

stream

Unbounded, Pipelined
Operator

What describe?
int c=12;
while(true)

{
int aval=astream.read();

 int bval=bstream.read();
 int res=a*b+c;
 resstream.write(res);

}
Penn ESE532 Fall 2018 -- DeHon 41

12

a b

res

With function call,
loop in function

int c=12;
while(true)

{
 int aval=astream.read();

 int bval=bstream.read();
 int res=multiply(a,b)+c;
 resstream.write(res);

}

Penn ESE532 Fall 2018 -- DeHon 42

8

Compact Expression: Arrays

•  Useful to be able to refer to different
values (a large number of values) with
the same code.

•  Arrays + Loops: give us a way to do that

•  Useful: general expression, hardware
description

Penn ESE532 Fall 2018 -- DeHon 43

Compact Expression:
Arrays+Logic

•  Vector sum:
– c3=a3+b3; c2=a2+b2; c1=a1+b1; c0=a0+b0;
–  for(i=0;i<3;i++) c[i]=a[i]+b[i];

•  Chose small length to fit non-array on slide
– #define K 16
–  for(i=0;i<K;i++) c[i]=a[i]+b[i];

Penn ESE532 Fall 2018 -- DeHon 44

Compact Expression:
Arrays+Logic

•  Dot Product:
– Y=a3*b3; c2=a2*b2; c1=a1*b1; c0=a0*b0;
– Y=0; for(i=0;i<3;i++) Y+=a[i]*b[i];

Penn ESE532 Fall 2018 -- DeHon 45

Compact Expression:
Arrays+Logic

•  Vector sum:
– c3=a3+b3; c2=a2+b2; c1=a1+b1; c0=a0+b0;
–  for(i=0;i<3;i++) c[i]=a[i]+b[i];

•  These array elements may be nodes in
dataflow graph, just like the variables we
saw for function f
– Express large dataflow graphs
– Make area-time choices for implementation

Penn ESE532 Fall 2018 -- DeHon 46

Foreshadowing:
C Array Challenge

Penn ESE532 Fall 2018 -- DeHon 47

•  C programmers think of arrays as
memory (or memory as arrays)
– …and sometimes we will want to

•  Be careful understanding (and
expressing) arrays that don’t have to be
memories
– …and treated with memory semantics

Loop Interpretations

•  What does a loop describe?
– Sequential behavior [when to execute]
– Spatial construction [when create HW]
– Data Parallelism [sameness of compute]

•  We will want to use for all 3
•  Sometimes need to help the compiler

understand which we want

Penn ESE532 Fall 2018 -- DeHon 48

9

Loop Bounds
•  Loops without constant bounds

while (sum+a[i]<100) {
sum+=a[i];

 b[i]=a[i]>>2;
 i++; }

•  How many times loop execute?
•  Typically force sequentialization

– Cannot unroll into hardware
•  Bad for Real Time

– Cannot say how long they will run Penn ESE532 Fall 2018 -- DeHon 49

Loop Increment

•  Loops with variable increment also force
sequentialization
for (i=0;i<100;i+=f(i))
{ b[i]=a[i]; sum+=a[i]; }

•  What are values of I for which evaluate
body?

•  Also bad for Real Time

Penn ESE532 Fall 2018 -- DeHon 50

Loop Interpretations
•  What does a loop describe?

– Sequential behavior [when execute]
– Spatial construction [when create HW]
– Data Parallelism [sameness of compute]

•  We will want to use for all 3
•  C allows expressive loops

– Some expressiveness
•  Not compatible with spatial hardware construction
•  Same ones typically not compatible with Real Time

Penn ESE532 Fall 2018 -- DeHon 51

Unroll

•  Vivado HLS has pragmas for unrolling
•  UG901: Vivado HLS User’s Guide

– P180—229 for optimization and directives
•  #pragma HLS UNROLL factor=…

•  Use to control area-time points
– Use of loop for spatial vs. temporal description

Penn ESE532 Fall 2018 -- DeHon 52

Arrays as Memory Banks

•  Hardware expression: Sometimes we
will want to describe computations with
separate memory banks

int a[1024], b[1024],  
 c[1024];

for(i=0;i<1024;i++)
a[i]=bigmem[offset+i];

for (i=0;i<1024;i++)
c[i]=a[i]*b[i];

Penn ESE532 Fall 2018 -- DeHon 53

bigmem[]

a[] b[]

c[]

Arrays as Memory Banks

•  If single memory has only one port
– Can perform only one memory operation

per cycle
– What happens if a, b, c

all in bigmem? (II ?)
for (i=0;i<1024;i++)

c[i]=a[i]*b[i];

Penn ESE532 Fall 2018 -- DeHon 54

a[]

b[]

c[]

10

Physical Memory Port as
Limited Shared Resource

•  Typically single memory port
– Must sequentialize on use of memory port
– Reason for banking

•  Put in separate memories,
so operations can occur simultaneously

Penn ESE532 Fall 2018 -- DeHon 55

a[]

b[]

c[]

bigmem[]

a[] b[]

c[]

Zed DRAM 1 port
Virtex BRAM 2 ports

Arrays as things to put in
Memory Banks

•  Computational expression: sometimes
useful to express computation
– Then decide how to pack array state into

memory banks for different
•  Hardware availability
•  Area-Time tradeoffs

Penn ESE532 Fall 2018 -- DeHon 56

a[]

b[]

c[]

bigmem[]

a[] b[]

c[]

bigmem[]

a[]
b[]

c[]

Arrays as Inputs and Outputs

•  Computational Expression: arrays are
often a natural way of expression set of
inputs and outputs

Penn ESE532 Fall 2018 -- DeHon 58

int c=12;
while(true)

{
int aval=astream.read();

 int bval=bstream.read();
 int res=a*b+c;
 resstream.write(res);

}

void op(int a[BLOCK], b[BLOCK],
out[BLOCK]) {

 for (i=0;i<BLOCK;i++)
 {

 out[i]=a[i]*b[i]+c;
}

}

Arrays as Local Memory
•  Hardware/Computational expression:

natural way of describing local state
hist(int a[SIZE], out[EVENTS]) {
 int local[EVENTS];
 for(i=0;i<EVENTS;i++)
 local[i]=0;
 for(i=0;i<SIZE;i++)
 local[a[i]]++;
 for(i=0;i<EVENTS;i++)
 out[i]=local[i];
}Penn ESE532 Fall 2018 -- DeHon 59

a

local[] +1

Penn ESE532 Fall 2018 -- DeHon 60

C Memory Model

•  One big linear address
space of locations

•  Most recent definition to
location is value

•  Sequential flow of
statements

000
001
002

005
006
007
008
009
010
011

004 Addr

New value

Current value

Penn ESE532 Fall 2018 -- DeHon 61

Challenge: C Memory Model

•  One big linear address
space of locations

•  Assumes all arrays live in
same memory

•  Assumes arrays may
overlap?

000
001
002

005
006
007
008
009
010
011

004 Addr

New value

Current value

11

Example
•  Assume a, b live in same memory
•  Placed in sequence as shown
•  What happens when

int a[16];
int b[16];
– Write to a[17]
–  Read from b[-2]

Penn ESE532 Fall 2018 -- DeHon 62

a[15]
a[14]

b[0]
b[1]
b[2]

a[0]

b[15]

. . .

. . .

0x040

0x080

0x0C0

0x084
0x088

0x07C
0x078

Penn ESE532 Fall 2018 -- DeHon 63

Memory Operation Challenge

•  Memory is just a set of location
•  But memory expressions in C can

refer to variable locations
– Does A[i], B[j] refer to same location?
– A[f(i)], B[g(j)] ?

Penn ESE532 Fall 2018 -- DeHon 64

C Memory/Pointer
Sequentialization

•  Must preserve ordering of memory
operations
– A read cannot be moved before write to

memory which may redefine the location of
the read
•  Conservative: any write to memory
•  Sophisticated analysis may allow us to prove

independence of read and write
– Writes which may redefine the same

location cannot be reordered

Penn ESE532 Fall 2018 -- DeHon 65

C Memory/Pointer
Sequentialization

•  Must preserve ordering of memory
operations
– A read cannot be moved before write to

memory which may redefine the location of
the read

– Writes which may redefine the same
location cannot be reordered

•  True for read/write to single array even
if know arrays isolated
– So expression issue broader than C

Penn ESE532 Fall 2018 -- DeHon 66

Consequence

•  Expressions and operations through
variables (whose address is never
taken) can be executed at any time
– Just preserve the dataflow

•  Memory assignments must execute in
strict order
–  Ideally: partial order
– Conservatively: strict sequential order of C

Penn ESE532 Fall 2018 -- DeHon 67

Forcing Sequencing

•  Demands we introduce some discipline
for deciding when operations occur
– Could be a FSM
– Could be an explicit dataflow token
– Callahan (reading) uses control register

•  Other uses for timing control
– Control
– Variable delay blocks
– Looping

12

Penn ESE532 Fall 2018 -- DeHon 68

Scheduled Memory Operations

Source: Callahan

Hardware/Parallelism Challenge

•  Can we give enough information to the
compiler to
– allow it to reorder?
– allow to put in separate embedded

memories (separate banks)?
•  Is the compiler smart enough to exploit?

Penn ESE532 Fall 2018 -- DeHon 69

Mux Conversion and Memory

•  What might go wrong if we mux-
converted the following:

if (cond)
 a[i]=0;

else
 b[i]=0;

Penn ESE532 Fall 2018 -- DeHon 70

Mux Conversion and Memory

•  What might go wrong if we mux-
converted the following:

if (cond)
 a[i]=0;

else
 b[i]=0;

•  Don’t want memory operations in non-
taken branch to occur.

Penn ESE532 Fall 2018 -- DeHon 71

Mux Conversion and Memory

if (cond)
 a[i]=0;

else
 b[i]=0;
Don’t want memory operations in non-taken

branch to occur.
•  Conclude: cannot mux-convert blocks with

memory operations (without additional care)
Penn ESE532 Fall 2018 -- DeHon 72

Conditions and Memory

if (cond)
 a[i]=0;

else
 b[i]=0;

Penn ESE532 Fall 2018 -- DeHon 73

activate

cond

a[] b[]

w
e a d w
e a d

i 0

13

Dependence in Loops

for(i=0;i<K;i++)
 Y[i]=a[i]*Y[i-1];

If a value needed by one instance of the
loop is written by another instance, can
create cyclic dependence.
 ! limit parallelism (pipeline II)

Penn ESE532 Fall 2018 -- DeHon 74

Dependence in Loops

for(i=0;i<K;i++)
 Y[i]=a[i]*Y[i-1];

for(i=0;i<K;i++)
 Y[i]=a[i]*Y[i-2];

Dependence distance same as
 # registers in cycle.

Penn ESE532 Fall 2018 -- DeHon 75

a[]

y[]

a[i]
y[i−1]

y[i]

a[]

y[]

a[i]

y[i]
y[i−1]

y[i−2]

Dependence Fixed/
Predictable?

for(i=0;i<K;i++)
 Y[i]=a[i]*Y[i-1]+Y[i-2];

for(i=0;i<K;i++)
 Y[i]=a[i]*Y[b[i]];

If dependence data-dependent, forced to
sequentialize.

Penn ESE532 Fall 2018 -- DeHon 76

Dependence Fixed/
Predictable?

for(i=0;i<K;i++)
 Y[i]=a[i]*Y[i-1]+Y[i-2];

for(i=0;i<K;i++)
 Y[i]=a[i]*Y[2*i+3];

If dependence linear, aggressive compliers
may be able to resolve.

Penn ESE532 Fall 2018 -- DeHon 77

Dependence Fixed/
Predictable?

for(i=0;i<K;i++)
 Y[i]=
 a[i]*Y[ceil(sqrt(i)*sin(2i))];

If dependence too complicated, compiler not
solve and will force sequential execution.

Penn ESE532 Fall 2018 -- DeHon 78

Memory Allocation?

•  How support malloc() in hardware?

Penn ESE532 Fall 2018 -- DeHon 79

14

Hardware Memory

•  Typically small, fixed, local memory blocks
– E.g. 36Kb BRAMs

•  Reuse memory blocks
– Not allocate new blocks
– Cannot make data-dependent memory sized

blocks
– Cannot hold arbitrary-sized data
– …and processing on arbitrary-sized data not

Real Time
Penn ESE532 Fall 2018 -- DeHon 80

Use of malloc()

•  Data-dependent object (array) size
•  Data-dependent number of objects
•  Processing data-dependent sizes or

objects not consistent with Real Time
•  For Real Time

– Statically allocate maximum size will need

Penn ESE532 Fall 2018 -- DeHon 81

No malloc()

•  Generally don’t want to use malloc with
– Hardware Accelerated functions
– Real Time computations

•  Vivado HLS won’t let you use malloc()

Penn ESE532 Fall 2018 -- DeHon 82

Pointer Passing

•  What does it mean to pass a pointer
into a function?

•  What if accelerator doesn’t have access
to the memory holding the data pointed
to by the pointer?

Penn ESE532 Fall 2018 -- DeHon 83

Pointer Passing

•  What happens if we give accelerators
access to common memory holding
data for pointer, but
– There’s only one port into memory
– Memory is 10 cycles away
– And there are 100 accelerators that may

need access
– Memory can only handle one memory op

per cycle
Penn ESE532 Fall 2018 -- DeHon 84

Avoid Pointer Passing

•  Tend to copy data into / move data
among hardware accelerator memories
rather than passing pointers.

Penn ESE532 Fall 2018 -- DeHon 85

15

Penn ESE532 Fall 2018 -- DeHon 86

Big Ideas:
•  C (any prog lang) specifies a computation
•  Can describe spatial computation

– Has some capabilities that don’t make sense
in hardware
•  Shared memory pool, malloc, recursion

– Watch for unintended sequentialization
•  C for spatial is coded differently from C

for processor
– …but can still run on processor

•  Good for leaf functions (operations)
– Limiting for full task

Penn ESE532 Fall 2018 -- DeHon 87

Admin

•  Reading for Monday on Web
– Xilinx HLS documents

•  No homework due Friday (10/5)
– Enjoy Fall Break

•  HW5 due next Friday (10/12)
•  Return feedback
•  Class in here at noon

