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ESE532: 
System-on-a-Chip Architecture 

Day 10:  October 3, 2018 
High Level Synthesis (HLS) 

C-to-gates 
Maybe: C-for-gates 
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Today 
•  Motivation 
•  Spatial Computations from C 

specification 
– Variables and expression (skip?) 
– Simple Conditionals 
– Loops 
– Functions 
– Arrays 
– Memories 

•  Complexities from C semantics 

Message 
•  C (or any programming language) 

specifies a computation 
•  Can describe spatial computation 
•  Underlying semantics is sequential 

– Watch for unintended sequentialization 
– Write C for spatial differently than you write 

C for processors 
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Coding Accelerators 

•  Want to exploit FPGA logic on Zynq to 
accelerate computations 

•  Traditionally has meant develop 
accelerators in  
– Hardware Description Language (HDL) 

•  E.g. Verilog ! undergrads see in CIS371 
– Directly in schematics 
– Generator language (constructs logic) 
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Course “Hypothesis” 

•  C-to-gates synthesis mature enough to use 
to specify hardware 
– Leverage fact everyone knows C 

•  (must, at least, know C to develop embedded code) 

– Avoid taking time to teach Verilog or VHDL 
•  Or making Verilog a pre-req. 

– Focus on teaching how to craft hardware 
•  Using the C already know 
•  …may require thinking about the C differently 
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Discussion [open] 

•  Is it obvious we can write C to describe 
hardware? 

•  What parts of C translate naturally to 
hardware? 

•  What parts of C might be problematic? 
•  What parts of hardware design might be 

hard to describe in C? 
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Three Perspectives 
1.  How express spatial/hardware 

computations in C 
–  May want to avoid some constructs in C 

2.  How express computations 
–  Hopefully agnostic to spatial vs. 

sequential 
3.  Given C code: how could we 

implement in spatial hardware 
–  Some corner cases and technicalities 

make tricky 
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Advantage 

•  Use C for hardware and software 
– Test out functionality entirely in software 

•  Debug code before put on hardware where 
harder to observe what’s happening 

•  …without spending time in place and route 

– Explore hardware/software tradeoffs by 
targeting same code to either hardware or 
software 
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Context 

•  C most useful for describing behavior of 
leaf operators 

•  C alone doesn’t naturally capture task 
parallelism 
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Preclass F 

•  Ready for preclass f? 

•  Skip to preclass f 
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C Primitives 
Arithmetic Operators 

•  Unary Minus (Negation)  -a   
•  Addition (Sum)                  a + b   
•  Subtraction (Difference)  a - b 
•  Multiplication (Product)  a * b   
•  Division (Quotient)          a / b   
•  Modulus (Remainder)          a % b   

Things might have a hardware operator for… 
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C Primitives 
Bitwise Operators 

•  Bitwise Left Shift               a << b   
•  Bitwise Right Shift       a >> b   
•  Bitwise One's Complement  ~a   
•  Bitwise AND                       a & b   
•  Bitwise OR                       a | b   
•  Bitwise XOR                       a ^ b   

Things might have a hardware operator for… 
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C Primitives 
Comparison Operators 

•  Less Than                     a < b   
•  Less Than or Equal To  a <= b   
•  Greater Than                     a > b   
•  Greater Than or Equal To  a >= b   
•  Not Equal To                     a != b   
•  Equal To                     a == b   
•  Logical Negation            !a   
•  Logical AND                     a && b   
•  Logical OR                     a || b 

Things might have a hardware operator for… 
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Expressions:  
combine operators 

•  a*x+b 

A connected set of operators 
 ! Graph of operators 

* 

+

a x 
b 
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Expressions:  
combine operators 

•  a*x+b 
•  a*x*x+b*x+c 
•  a*(x+b)*x+c 
•  ((a+10)*b < 100) 

A connected set of operators 
 ! Graph of operators 
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C Assignment 

•  Basic assignment statement is: 
         Location = expression 
•  f=a*x+b 

* 

+

a x 
b 

f 
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Straight-line code 

•  a sequence of assignments 
•  What does this mean? 

g=a*x; 
h=b+g; 
i=h*x; 
j=i+c; 

b c 

* 

a x 

g 
+ h 

* i 
+
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Variable Reuse 
•  Variables (locations) define flow 

between computations 
•  Locations (variables) are reusable 

t=a*x;  
r=t*x;  
t=b*x;  
r=r+t;             
r=r+c;            
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Variable Reuse 
•  Variables (locations) define flow between 

computations 
•  Locations (variables) are reusable 

t=a*x;   t=a*x; 
r=t*x;    r=t*x; 
t=b*x;                    t=b*x; 
r=r+t;            r=r+t; 
r=r+c;           r=r+c; 

•  Sequential assignment semantics tell us 
which definition goes with which use. 
–  Use gets most recent preceding definition. 
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Dataflow 

•  Can turn sequential 
assignments into 
dataflow graph through 
def!use connections 
t=a*x;   t=a*x; 
r=t*x;    r=t*x; 
t=b*x;                    t=b*x; 
r=r+t;            r=r+t; 
r=r+c;           r=r+c; 

* * 

* 

+ 

+ 

a x b c 
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Dataflow Height 

•  t=a*x;   t=a*x; 
r=t*x;    r=t*x; 
t=b*x;                    t=b*x; 
r=r+t;            r=r+t; 
r=r+c;           r=r+c; 

•  Height (delay) of DF 
graph may be less than # 
sequential instructions. 

* * 

* 

+ 

+ 

a x b c 
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Lecture Checkpoint 

•  Happy with ? 
– Straight-line code 
– Variables 

•  Graph for preclass f 

Straight Line Code 

•  C is fine for expressing straight-line 
code and variables 
– Has limited data types 

•  Address with tricks like masking 
•  Address with user-defined types 
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Optimizations can probably 
expect compiler to do 

•  Constant propagation:  a=10; b=c[a]; 
•  Copy propagation:  a=b; c=a+d; ! c=b+d; 
•  Constant folding:  c[10*10+4]; ! c[104]; 
•  Identity Simplification: c=1*a+0; ! c=a; 
•  Strength Reduction: c=b*2; ! c=b<<1; 
•  Dead code elimination 
•  Common Subexpression Elimination: 

–  C[x*100+y]=A[x*100+y]+B[x*100+y] 
–  t=x*100+y;  C[t]=A[t]+B[t]; 

•  Operator sizing:  for (i=0; i<100; i++) b[i]=(a&0xff+i); 
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Conditionals 

•  What can we do for simple 
conditionals? 

if (a<b) 
res=b-a 

Else 
res=a-b 
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Simple Control Flow 

•  If (cond) { … } else { …} 

•  Assignments become conditional 
•  In simplest cases (no memory ops),  

can treat as dataflow node 

cond 

choose 

then else 
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Simple Conditionals 

if (a>b) 
  c=b*c; 
else 
  c=a*c; 

a>b b*c a*c 

c 
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Simple Conditionals 

v=a; 
if (b>a) 
   v=b; 

•  If not assigned, value flows from before 
assignment 

b>a b a 

v 
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Simple Conditionals 
max=a;
min=a;
if (a>b)
  {min=b;
   c=1;}
else
  {max=b;
   c=0;}
•  May (re)define many values on each branch. 

a>b b a 

min 

1 0 

max c 

Preclass G 

•  Graph for preclass G 
as mux-conversion? 
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Mux-Conversion and Real Time 

•  How does mux conversion of  
if/then/else interact with Real Time? 

if (a)
   y=b;
else 
  y=sqrt(b);
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a b

sqrt

y

Function Call 

•  What do we do with function calls? 
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Inline 

int f(int a, int b) 
return(sqrt(a*a+b*b)); 

for(i=0;i<MAX;i++) 
D[i]=f(A[i],B[i]); 

•  for(i=0;i<MAX;i++) 
  D[i]=sqrt(A[i]*A[i]+B[i]*B[i]); 
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Functions provide descriptive convenience and compactness. 
…but don’t need to force implementation. 

Treat as data flow 

•  Implement function 
as an operation 

•  Send arguments as 
input tokens 

•  Get result back as 
token 

Functions provide 
potential division 
between substrates? 
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Shared Function 
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Functions express shared operators. 

Recursion? 
int fib(int x) { 

 if ((x==0) || (x==1)) 
return(1); 

   else 
return(fib(x-1)+fib(x-2))
; 

} 

•  In general won’t work. 
–  Problem? 

•  Smart compiler might 
be able to turn some 
cases into iterative 
loop. 

•  …but don’t count on it. 
–  VivadoHLS will not 
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Loops… 
•  From an express computation 

standpoint, have several roles 
– Compact code 
– Unbounded computation 

•  From describe hardware 
– Compact expression of parallel hardware 
– Express pipelines 

•  Express hardware/software tradeoff 
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Loop Compact Expression 

•  What express? 
– Sequential, fully unrolled, partially unrolled? 
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Stream 

•  Logical abstraction of a persistent point-
to-point communication link between 
operators 
– Has a (single) source and sink 
– Carries data presence / flow control 
– Provides in-order (FIFO) delivery of data 

from source to sink 

stream 

Day 5 
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Stream 

•  For the moment assume way to read 
and write to streams: 
– stream.read() – return next value on 

stream 
– stream.write(val); put val onto stream 

stream 

Unbounded, Pipelined 
Operator 

What describe? 
int c=12;
while(true)

{
int aval=astream.read();

   int bval=bstream.read();
   int res=a*b+c;
   resstream.write(res);

}
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12

a b

res

With function call,  
loop in function 

int c=12; 
while(true) 

{ 
 int aval=astream.read(); 

   int bval=bstream.read(); 
   int res=multiply(a,b)+c; 
   resstream.write(res); 

} 
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Compact Expression: Arrays 

•  Useful to be able to refer to different 
values (a large number of values) with 
the same code. 

•  Arrays + Loops: give us a way to do that 

•  Useful: general expression, hardware 
description 
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Compact Expression: 
Arrays+Logic 

•  Vector sum: 
– c3=a3+b3; c2=a2+b2; c1=a1+b1; c0=a0+b0; 
–  for(i=0;i<3;i++) c[i]=a[i]+b[i]; 

•  Chose small length to fit non-array on slide 
– #define K 16 
–  for(i=0;i<K;i++) c[i]=a[i]+b[i]; 
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Compact Expression: 
Arrays+Logic 

•  Dot Product: 
– Y=a3*b3; c2=a2*b2; c1=a1*b1; c0=a0*b0; 
– Y=0; for(i=0;i<3;i++) Y+=a[i]*b[i]; 

Penn ESE532 Fall 2018 -- DeHon 45 

Compact Expression: 
Arrays+Logic 

•  Vector sum: 
– c3=a3+b3; c2=a2+b2; c1=a1+b1; c0=a0+b0; 
–  for(i=0;i<3;i++) c[i]=a[i]+b[i]; 

•  These array elements may be nodes in 
dataflow graph, just like the variables we 
saw for function f 
– Express large dataflow graphs 
– Make area-time choices for implementation 
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Foreshadowing:  
C Array Challenge 
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•  C programmers think of arrays as 
memory (or memory as arrays) 
– …and sometimes we will want to 

•  Be careful understanding (and 
expressing) arrays that don’t have to be 
memories 
– …and treated with memory semantics 

Loop Interpretations 

•  What does a loop describe? 
– Sequential behavior  [when to execute] 
– Spatial construction  [when create HW] 
– Data Parallelism [sameness of compute] 

•  We will want to use for all 3 
•  Sometimes need to help the compiler 

understand which we want 
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Loop Bounds 
•  Loops without constant bounds 

while (sum+a[i]<100) {
sum+=a[i];

   b[i]=a[i]>>2;
   i++; }

•  How many times loop execute? 
•  Typically force sequentialization 

– Cannot unroll into hardware 
•  Bad for Real Time 

– Cannot say how long they will run Penn ESE532 Fall 2018 -- DeHon 49 

Loop Increment 

•  Loops with variable increment also force 
sequentialization 
for (i=0;i<100;i+=f(i)) 
{ b[i]=a[i]; sum+=a[i]; }

•  What are values of I for which evaluate 
body? 

•  Also bad for Real Time 
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Loop Interpretations 
•  What does a loop describe? 

– Sequential behavior  [when execute] 
– Spatial construction  [when create HW] 
– Data Parallelism [sameness of compute] 

•  We will want to use for all 3 
•  C allows expressive loops 

– Some expressiveness 
•  Not compatible with spatial hardware construction 
•  Same ones typically not compatible with Real Time 
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Unroll 

•  Vivado HLS has pragmas for unrolling 
•  UG901: Vivado HLS User’s Guide 

– P180—229 for optimization and directives 
•  #pragma HLS UNROLL factor=…  

•  Use to control area-time points 
– Use of loop for spatial vs. temporal description 
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Arrays as Memory Banks 

•  Hardware expression: Sometimes we 
will want to describe computations with 
separate memory banks 

int a[1024], b[1024],  
   c[1024];

for(i=0;i<1024;i++)
a[i]=bigmem[offset+i];

for (i=0;i<1024;i++)
c[i]=a[i]*b[i];
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bigmem[]

a[] b[]

c[]

Arrays as Memory Banks 

•  If single memory has only one port 
– Can perform only one memory operation 

per cycle 
– What happens if a, b, c  

all in bigmem? (II ?) 
for (i=0;i<1024;i++)

c[i]=a[i]*b[i];

Penn ESE532 Fall 2018 -- DeHon 54 

a[]

b[]

c[]
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Physical Memory Port as 
Limited Shared Resource 

•  Typically single memory port 
– Must sequentialize on use of memory port 
– Reason for banking 

•  Put in separate memories,  
so operations can occur simultaneously 
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a[]

b[]

c[]

bigmem[]

a[] b[]

c[]

Zed DRAM 1 port 
Virtex BRAM 2 ports 

Arrays as things to put in 
Memory Banks 

•  Computational expression: sometimes 
useful to express computation 
– Then decide how to pack array state into 

memory banks for different  
•  Hardware availability 
•  Area-Time tradeoffs 
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a[]

b[]

c[]

bigmem[]

a[] b[]

c[]

bigmem[]

a[]
b[]

c[]

Arrays as Inputs and Outputs 

•  Computational Expression: arrays are 
often a natural way of expression set of 
inputs and outputs 
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int c=12;
while(true)

{
int aval=astream.read();

   int bval=bstream.read();
   int res=a*b+c;
   resstream.write(res);

}

void op(int a[BLOCK], b[BLOCK], 
out[BLOCK]) {

     for (i=0;i<BLOCK;i++)
   {

   out[i]=a[i]*b[i]+c;
}

}

Arrays as Local Memory 
•  Hardware/Computational expression: 

natural way of describing local state 
hist(int a[SIZE], out[EVENTS]) {
    int local[EVENTS];
    for(i=0;i<EVENTS;i++)
      local[i]=0;
    for(i=0;i<SIZE;i++)
      local[a[i]]++;
    for(i=0;i<EVENTS;i++)
      out[i]=local[i];
}Penn ESE532 Fall 2018 -- DeHon 59 

a

local[] +1
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C Memory Model 

•  One big linear address 
space of locations 

•  Most recent definition to 
location is value 

•  Sequential flow of 
statements 

000 
001 
002 

005 
006 
007 
008 
009 
010 
011 

004 Addr 

New value 

Current value 
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Challenge: C Memory Model 

•  One big linear address 
space of locations 

•  Assumes all arrays live in 
same memory 

•  Assumes arrays may 
overlap? 

000 
001 
002 

005 
006 
007 
008 
009 
010 
011 

004 Addr 

New value 

Current value 
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Example 
•  Assume a, b live in same memory 
•  Placed in sequence as shown 
•  What happens when 

int a[16];
int b[16];
– Write to a[17] 
–   Read from b[-2] 
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a[15]
a[14]

b[0]
b[1]
b[2]

a[0]

b[15]

. . .

. . .

0x040

0x080

0x0C0

0x084
0x088

0x07C
0x078
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Memory Operation Challenge 

•  Memory is just a set of location 
•  But memory expressions in C can 

refer to variable locations 
– Does A[i], B[j] refer to same location? 
– A[f(i)], B[g(j)] ? 
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C Memory/Pointer 
Sequentialization 

•  Must preserve ordering of memory 
operations 
– A read cannot be moved before write to 

memory which may redefine the location of 
the read 
•  Conservative: any write to memory 
•  Sophisticated analysis may allow us to prove 

independence of read and write 
– Writes which may redefine the same 

location cannot be reordered 
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C Memory/Pointer 
Sequentialization 

•  Must preserve ordering of memory 
operations 
– A read cannot be moved before write to 

memory which may redefine the location of 
the read 

– Writes which may redefine the same 
location cannot be reordered 

•  True for read/write to single array even 
if know arrays isolated 
– So expression issue broader than C 
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Consequence 

•  Expressions and operations through 
variables (whose address is never 
taken) can be executed at any time 
– Just preserve the dataflow  

•  Memory assignments must execute in 
strict order 
–  Ideally: partial order 
– Conservatively: strict sequential order of C 
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Forcing Sequencing 

•  Demands we introduce some discipline 
for deciding when operations occur 
– Could be a FSM 
– Could be an explicit dataflow token 
– Callahan (reading) uses control register 

•  Other uses for timing control 
– Control 
– Variable delay blocks 
– Looping  
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Scheduled Memory Operations 

Source: Callahan 

Hardware/Parallelism Challenge 

•  Can we give enough information to the 
compiler to  
– allow it to reorder? 
– allow to put in separate embedded 

memories (separate banks)? 
•  Is the compiler smart enough to exploit? 
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Mux Conversion and Memory 

•  What might go wrong if we mux-
converted the following: 

if (cond)
 a[i]=0;

else
 b[i]=0;
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Mux Conversion and Memory 

•  What might go wrong if we mux-
converted the following: 

if (cond)
 a[i]=0;

else
 b[i]=0; 

•  Don’t want memory operations in non-
taken branch to occur. 
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Mux Conversion and Memory 

if (cond)
 a[i]=0;

else
 b[i]=0;
Don’t want memory operations in non-taken 

branch to occur. 
•  Conclude: cannot mux-convert blocks with 

memory operations (without additional care) 
Penn ESE532 Fall 2018 -- DeHon 72 

Conditions and Memory 

if (cond)
 a[i]=0;

else
 b[i]=0;
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activate

cond

a[] b[]

w
e a d w
e a d

i 0
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Dependence in Loops 

for(i=0;i<K;i++)
   Y[i]=a[i]*Y[i-1];

If a value needed by one instance of the 
loop is written by another instance, can 
create cyclic dependence.  
 ! limit parallelism (pipeline II)  
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Dependence in Loops 

for(i=0;i<K;i++)
   Y[i]=a[i]*Y[i-1];

for(i=0;i<K;i++)
   Y[i]=a[i]*Y[i-2];

Dependence distance same as  
 # registers in cycle. 
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a[]

y[]

a[i]
y[i−1]

y[i]

a[]

y[]

a[i]

y[i]
y[i−1]

y[i−2]

Dependence Fixed/
Predictable? 

for(i=0;i<K;i++)
   Y[i]=a[i]*Y[i-1]+Y[i-2];

for(i=0;i<K;i++)
   Y[i]=a[i]*Y[b[i]];

If dependence data-dependent, forced to 
sequentialize. 

Penn ESE532 Fall 2018 -- DeHon 76 

Dependence Fixed/
Predictable? 

for(i=0;i<K;i++)
   Y[i]=a[i]*Y[i-1]+Y[i-2];

for(i=0;i<K;i++)
   Y[i]=a[i]*Y[2*i+3];

If dependence linear, aggressive compliers 
may be able to resolve. 
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Dependence Fixed/
Predictable? 

for(i=0;i<K;i++)
   Y[i]=
  a[i]*Y[ceil(sqrt(i)*sin(2i))];

If dependence too complicated, compiler not 
solve and will force sequential execution. 
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Memory Allocation? 

•  How support malloc() in hardware? 
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Hardware Memory 

•  Typically small, fixed, local memory blocks 
– E.g. 36Kb BRAMs 

•  Reuse memory blocks 
– Not allocate new blocks 
– Cannot make data-dependent memory sized 

blocks 
– Cannot hold arbitrary-sized data 
– …and processing on arbitrary-sized data not 

Real Time 
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Use of malloc() 

•  Data-dependent object (array) size 
•  Data-dependent number of objects 
•  Processing data-dependent sizes or 

objects not consistent with Real Time 
•  For Real Time 

– Statically allocate maximum size will need 
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No malloc() 

•  Generally don’t want to use malloc with  
– Hardware Accelerated functions 
– Real Time computations 

•  Vivado HLS won’t let you use malloc() 
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Pointer Passing 

•  What does it mean to pass a pointer 
into a function? 

•  What if accelerator doesn’t have access 
to the memory holding the data pointed 
to by the pointer? 
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Pointer Passing 

•  What happens if we give accelerators 
access to common memory holding 
data for pointer, but 
– There’s only one port into memory 
– Memory is 10 cycles away 
– And there are 100 accelerators that may 

need access 
– Memory can only handle one memory op 

per cycle 
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Avoid Pointer Passing 

•  Tend to copy data into / move data 
among hardware accelerator memories 
rather than passing pointers. 
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Big Ideas: 
•  C (any prog lang) specifies a computation 
•  Can describe spatial computation 

– Has some capabilities that don’t make sense 
in hardware 
•  Shared memory pool, malloc, recursion 

– Watch for unintended sequentialization 
•  C for spatial is coded differently from C 

for processor 
– …but can still run on processor 

•  Good for leaf functions (operations) 
– Limiting for full task 

Penn ESE532 Fall 2018 -- DeHon 87 

Admin 

•  Reading for Monday on Web 
– Xilinx HLS documents 

•  No homework due Friday (10/5) 
– Enjoy Fall Break 

•  HW5 due next Friday (10/12) 
•  Return feedback 
•  Class in here at noon 


