
1

Penn ESE532 Fall 2018 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 22: November 14, 2018
Verification 2

Penn ESE532 Fall 2018 -- DeHon 2

Today
• Unit and Component Tests
• Assertions
• Proving correctness

– FSM Equivalence
• Timing and Testing

Message

• If you don’t test it, it doesn’t work.
• Testing can only prove the presence of

bugs, not the absence.
– Full verification strategy is more than

testing.

Penn ESE532 Fall 2018 -- DeHon 3

Testing with Reference
Specification

Validate the design by testing it:
• Create a set of test inputs
• Apply test inputs

– To implementation under test
– To reference specification

• Collect response outputs
• Check if outputs match

Penn ESE532 Fall 2018 -- DeHon 4

Day 20

Automated

• Testing suite must be automated
– Single script or make build to run
– Just start the script
– Runs through all testing and comparison

without manual interaction
– Including scoring and reporting a single

pass/fail result
• Maybe a count of failing cases

Penn ESE532 Fall 2018 -- DeHon 5

Day 20

Regression Test

• Regression Test -- Suite of tests to run
and validate functionality

Penn ESE532 Fall 2018 -- DeHon 6

Day 20

2

Unit Tests
• Regression for individual components
• Good to validate independently
• Lower complexity

– Fewer tests
– Complete quickly

• Make sure component(s) working before
run top-level design tests
– One strategy for long top-level regression

• Also useful
– Reuse component; understanding what brokePenn ESE532 Fall 2018 -- DeHon 7

1

0

Functional Scaffolding
• If functional decomposed into

components like implementation
• Replace individual components with

implementation
– Use reference/functional spec for rest

Penn ESE532 Fall 2018 -- DeHon 8

A B C

A B C

A B C

Functional Scaffolding
• If functional decomposed into

components like implementation
• Replace individual components with

implementation
– Use reference/functional spec for rest

• Independent test of integration for that
module

Penn ESE532 Fall 2018 -- DeHon 9

A B C

Functional Scaffolding
• If functional decomposed into

components like implementation
• Run reference component and

implementation together and check
outputs

Penn ESE532 Fall 2018 -- DeHon 10

A B C

B =

copy copy

Summarize
Mismatches

Decompose Specification
• Should specification decompose like

implementation?
– ultimate golden reference

• Only if that decomposition is simplest

• But, worth refining
– Golden reference simplest
– Intermediate functional decomposed

• Validate it versus golden
• Still simpler than final implementation
• Then use with implementationPenn ESE532 Fall 2018 -- DeHon 11

Test Decomposition

• Just as decomposition useful for design
complexity management,

• decomposition useful for verification
– …and debugging

Penn ESE532 Fall 2018 -- DeHon 12

3

Assertions

Penn ESE532 Fall 2018 -- DeHon 13

Assertion

• Predicate (Boolean expression) that
must be true

• Invariant
– Expect/demand this property to always

hold
– Never vary à never not be true

Penn ESE532 Fall 2018 -- DeHon 14

Equivalence with Reference
as Assertion

• Match of test and golden reference is a
heavy-weight example of an assertion

• r=fimpl(in);
• assert (r==fgolden(in));

Penn ESE532 Fall 2018 -- DeHon 15

Assertion as Invariant

• May express a property that must hold
without expressing how to compute it.

int res[2];
res=divide(n,d);
assert(res[QUOTIENT]*d+res[REMAINDER]==n);

Penn ESE532 Fall 2018 -- DeHon 16

Lightweight

• Typically lighter weight (less

computation) than full equivalence

check

• Typically less complete than full check

• Allows continuum expression

Penn ESE532 Fall 2018 -- DeHon 17

Preclass 1

What property needs to hold on l?
s=packetsum(p);
l=packetlen(p);
res=divide(s,l);

Penn ESE532 Fall 2018 -- DeHon 18

4

Check a Requirement

s=packetsum(p);
l=packetlen(p);
assert(l!=0);
res=divide(s,l);

Penn ESE532 Fall 2018 -- DeHon 19

Preclass 2

What must be true of a[found] before
return?

Penn ESE532 Fall 2018 -- DeHon 20

Merge using Streams
• Merging two sorted list is a streaming

operation
• int aptr; int bptr;
• astream.read(ain); bstream.read(bin)
• For (i=0;i<MCNT;i++)

If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}

Else // copy over remaining from astream/bstreamPenn ESE532 Fall 2018 -- DeHon 21

Day 13 Merge Requirement
• Require: astream, bstream sorted
• int aptr; int bptr;
• astream.read(ain); bstream.read(bin)
• For (i=0;i<MCNT;i++)

If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}

Else // copy over remaining from astream/bstream
Penn ESE532 Fall 2018 -- DeHon 22

Merge Requirement
• Require: astream, bstream sorted
• Int ptr; int bptr;
• astream.read(ain); bstream.read(bin)
• For (i=0;i<MCNT;i++)

If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++;
int prev_ain=ain; astream.read(ain);
assert(prev_ain<=ain);

}
Penn ESE532 Fall 2018 -- DeHon 23

Merge with Order Assertion
• When composed

– Every downstream merger checks work of
predecessor

Penn ESE532 Fall 2018 -- DeHon 24

merge
+alt

merge
+alt

merge
+alt

5

Merge Requirement
• Require: astream, bstream sorted
• Requirement that input be sorted is good

– And not hard to check
• Not comprehensive

– Weaker than saying output is a sorted version of
input

• What errors would it allow?

Penn ESE532 Fall 2018 -- DeHon 25

What do with Assertions?
• Include logic during testing (verification)
• Omit once tested

– Compiler/library/macros omit code
– Keep in source code

• Maybe even synthesize to gate logic for
FPGA testing

• When assertion fail
– Count
– Break program for debugging (dump core)

Penn ESE532 Fall 2018 -- DeHon 26

Assertion Roles
• Specification (maybe partial)

– May address state that doesn’t exist in gold
reference

• Documentation
– This is what I expect to be true

• Needs to remain true as modify in the future

• Defensive programming
– Catch violation of input requirements

• Catch unexpected events, inputs
• Early failure detection
• Validate that something isn’t happeningPenn ESE532 Fall 2018 -- DeHon 27

Assertion Discipline

• Worthwhile discipline
– Consider, document input/usage

requirements
– Consider and document properties that

must always hold
• Good to write those down

– As precisely as possible
• Good to check assumptions hold

Penn ESE532 Fall 2018 -- DeHon 28

Equivalence Proof

FSM

Penn ESE532 Fall 2018 -- DeHon 29

Prove Equivalence

• Testing is a subset of Verification
• Testing can only prove the presence of

bugs, not the absence.
• Depends on picking an adequate set of

tests
• Can we guarantee that all behaviors are

the correct? Same as reference?
Seen all possible behaviors?

Penn ESE532 Fall 2018 -- DeHon 30

6

Idea

• Reason about all behaviors
– Response to all possible inputs

• Try to find if there is any way to reach
disagreement with specification

• Or can prove that they always agree

• Still demands specification

Penn ESE532 Fall 2018 -- DeHon 31

Testing with Reference
Specification

Validate the design by testing it:
• Create a set of test inputs
• Apply test inputs

– To implementation under test
– To reference specification

• Collect response outputs
• Check if outputs match

Penn ESE532 Fall 2018 -- DeHon 32

Day 20

Formal Equivalence with
Reference Specification

Validate the design by proving
equivalence between:
• implementation under test
• reference specification

Penn ESE532 Fall 2018 -- DeHon 33

FSM Equivalence

• Illustrate with concrete model of FSM
equivalence
– Is some implementation FSM
– Equivalent to reference FSM

Penn ESE532 Fall 2018 -- DeHon 34

Penn ESE532 Fall 2018 -- DeHon 35

Compare

• Start with golden model setup
– Run both and compare output

• Create composite FSM
– Start with both FSMs
– Connect common inputs

together (Feed both FSMs)
– XOR together outputs of two

FSMs
• Xor’s will be 1 if they disagree,

0 otherwise

Penn ESE532 Fall 2018 -- DeHon 36

Compare

• Create composite FSM
– Start with both FSMs
– Connect common inputs together (Feed both FSMs)
– XOR together outputs of two FSMs

• Xor’s will be 1 if they disagree, 0 otherwise

• Ask if the new machine ever generate a 1 on an
xor output (signal disagreement)
– Any 1 is a proof of non-equivalence
– Never produce a 1 à equivalent

7

Penn ESE532 Fall 2018 -- DeHon 37

Creating Composite
FSM
• Assume know start state for each FSM

• Each state in composite is labeled by
the pair {S1i, S2j}

– How many such states?

• Start in {S10, S20}

• For each input a, create a new edge:
– T(a,{S10, S20})à {S1i, S2j}

• If T1(a, S10)à S1i, and T2(a, S20)à S2j

• Repeat for each composite state reached

Penn ESE532 Fall 2018 -- DeHon 38

Composite FSM

• How much work?
• Hint:

– Maximum number of composite states
(state pairs)

– Maximum number of edges from each
state pair?

– Work per edge?

Penn ESE532 Fall 2018 -- DeHon 39

Composite FSM

• Work
At most |alphabet|*|State1|*|State2| edges
== work

• Can group together original edges
– i.e. in each state compute intersections of

outgoing edges

– Really at most |E1|*|E2|

Penn ESE532 Fall 2018 -- DeHon 40

Non-Equivalence
• State {S1i, S2j} demonstrates non-

equivalence iff
– {S1i, S2j} reachable
– On some input, State S1i and S2j produce

different outputs
• If S1i and S2j have the same outputs for

all composite states, it is impossible to
distinguish the machines
– They are equivalent

• A reachable state with differing outputs
– Implies the machines are not identical

Penn ESE532 Fall 2018 -- DeHon 41

Reachable Mismatch

• Now that we have a composite state
machine, with this construction

• Question: does this composite state
machine ever produce a 1?
– Is there a reachable state that has differing

outputs?

Penn ESE532 Fall 2018 -- DeHon 42

Answering Reachability

• Start at composite start state {S10, S20}
• Search for path to a differing state
• Use any search

– Breadth-First Search, Depth-First Search
• End when find differing state

– Not equivalent
• OR when have explored entire

reachable graph without finding
– Are equivalent

8

Penn ESE532 Fall 2018 -- DeHon 43

Reachability Search

• Worst: explore all edges at most once
– O(|E|)=O(|E1|*|E2|)

• Can combine composition construction
and search
– i.e. only follow edges which fill-in as search
– (way described)

Example

Penn ESE532 Fall 2018 -- DeHon 44

s0

s1

s2

-/0

-/1

-/1

q0

q1

q3

q2-/1
-/1

-/0

1/0
0/0

Penn ESE532 Fall 2018 -- DeHon 45

Creating Composite FSM
• Assume know start state for each FSM
• Each state in composite is labeled by the pair

{S1i, S2j}
• Start in {S10, S20}
• For each symbol a, create a new edge:

– T(a,{S10, S20})à {S1i, S2j}
• If T1(a, S10)à S1i, and T2(a, S20)à S2j

• Check that both state machines produce same outputs
on input symbol a

• Repeat for each composite state reached

FSM à Model Checking
• FSM case simple – only deal with states
• More general, need to deal with

– operators (add, multiply, divide)
– Wide word registers in datapath

• Cause state exponential in register bits

• Tricks
– Treat operators symbolically

• Separate operator verification from control verif.
– Abstract out operator width

• Similar flavor of case-based search
– Conditionals need to be evaluated symbolicallyPenn ESE532 Fall 2018 -- DeHon 47

Assertion Failure Reachability

• Can use with assertions

• Is assertion failure reachable?

– Can identify a path (a sequence of inputs)

that leads to an assertion failure?

Penn ESE532 Fall 2018 -- DeHon 48

Formal Equivalence Checking

• Rich set of work on formal models for
equivalence
– Challenges and innovations to making

search tractable
• Common versions

– Model Checking (2007 Turing Award)
– Bounded Model Checking

Penn ESE532 Fall 2018 -- DeHon 49

9

Timing

Penn ESE532 Fall 2018 -- DeHon 50

Issues

• Cycle-by-cycle specification can be
overspecified

• Golden Reference Specification not run
at target speed

Penn ESE532 Fall 2018 -- DeHon 51

Tokens

• Use data presence to indicate when

producing a value

• Only compare corresponding outputs

– Only store present outputs from

computations, since that’s all comparing

Penn ESE532 Fall 2018 -- DeHon 52

Timing

• Record timestamp from implementation
• Allow reference specification to specify

its time stamps
– “Model this as taking one cycle”
– Or requirements on its timestamps

• This must occur before cycle 63
• This must occur between cycle 60 and 65

• Compare values and times
Penn ESE532 Fall 2018 -- DeHon 53

Challenge

• Cannot record at full implementation
rate
– Inadequate bandwidth to

• Store off to disk
• Get out of chip

• Cannot record all the data you might
want to compare at full rate

Penn ESE532 Fall 2018 -- DeHon 54

At Speed Testing

• Compiled assertions might help
– Perform the check at full rate so don’t need

to record

• Capture bursts to on-chip memory
– Higher bandwidth
– …but limited capacity, so cannot operate

continuously
Penn ESE532 Fall 2018 -- DeHon 55

10

Bursts to Memory

• Run in bursts
• Repeat

– Enable computation
– Run at full rate storing to memory buffer
– Stall computation
– Offload memory buffer at (lower) available

bandwidth
– (possibly check against golden model)

Penn ESE532 Fall 2018 -- DeHon 56

Generalize

• Generalize to
input and output

• Feed from memories
• Compute full rate
• Write into memory

• Can run at high rate for number of
cycles can store inputs and outputs

Penn ESE532 Fall 2018 -- DeHon 57

Input Sequence
 in Memory

Capture Outputs
 in Memory

Operator
 Under
 Test

High
Speed
Clock

Low speed, sequential load

Low speed, sequential offload

AXI Bus

Burst Testing

• Issue
– May only see high speed for

computation/interactions that occur within a
burst period

– May miss interaction at burst boundaries

• Mitigation
– Rerun with multiple burst boundary offsets
– So all interactions occur within some burst
– Decorrelate interaction and burst boundary

Penn ESE532 Fall 2018 -- DeHon 58

Input Sequence
 in Memory

Capture Outputs
 in Memory

Operator
 Under
 Test

High
Speed
Clock

Low speed, sequential load

Low speed, sequential offload

AXI Bus

Timing Validation
• Doesn’t need to be all testing either
• Static Timing Analysis to determine

viable clock frequency
– As Vivado is providing for you

• Cycle estimates as get from Vivado
– II, to evaluate a function

• Worst-Case Execution Time for
software

Penn ESE532 Fall 2018 -- DeHon 59

Decompose Verification

• Does it function correctly?
• What speed does it operate it?

– Does it continue to work correctly at that
speed?

Penn ESE532 Fall 2018 -- DeHon 60 Penn ESE532 Fall 2018 -- DeHon 61

Big Ideas

• Assertions valuable
– Reason about requirements and invariants
– Explicitly validate

• Formally validate equivalence when
possible

• Extend techniques to address timing and
support at-speed tests

11

Penn ESE532 Fall 2018 -- DeHon 62

Admin
• P3 due Friday
• P4 out
• Next week: Thanksgiving Week

– Lecture on Monday
– No lecture on Wednesday

• Because it is a virtual ”Friday”

