
1

Penn ESE532 Fall 2018 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 5: September 17, 2018
Dataflow Process Model

Penn ESE532 Fall 2018 -- DeHon
2

Today
Dataflow Process Model
•  Terms
•  Issues
•  Abstraction
•  Performance Prospects
•  Basic Approach
•  Dataflow variants
•  Motivations/demands for variants

–  If time permits

Message
•  Parallelism can be natural
•  Expression can be agnostic to substrate

– Abstract out implementation details
– Tolerate variable delays may arise in

implementation
•  Divide-and-conquer

– Start with coarse-grain streaming dataflow
•  Basis for performance optimization and

parallelism exploitation
Penn ESE532 Fall 2018 -- DeHon

3

Programmable SoC
•  Implementation Platform for innovation

– This is what you target (avoid NRE)
–  Implementation

 vehicle

Penn ESE532 Fall 2018 -- DeHon
4

Reminder

•  Goal:
exploit parallelism
on heterogeneous
PSoC to achieve
desired performance
(energy)

Penn ESE532 Fall 2018 -- DeHon
5

Term: Process
•  Abstraction of a processor
•  Looks like each process is running on a

separate processor
•  Has own state, including

– Program Counter (PC)
– Memory
–  Input/output

•  May not actually run on processor
– Could be specialized hardware block
– May share a processor

Penn ESE532 Fall 2018 -- DeHon
6

2

Thread

•  Has a separate locus of control (PC)
•  May share memory (contrast process)

– Run in common address space with other
threads

Penn ESE532 Fall 2018 -- DeHon
7

Model (from Day 3)
Communicating Threads

•  Computation is a collection of
sequential/control-flow “threads”

•  Threads may communicate
– Through dataflow I/O
–  (Through shared variables)

•  View as hybrid or generalization
•  CSP – Communicating Sequential

Processes ! canonical model example
Penn ESE532 Fall 2018 -- DeHon

8

Process
•  Processes allow expression of

independent control
•  Convenient for things that advance

independently
•  Process (thread) is the easiest way to

express some behaviors
– Easier than trying to describe as a single

process
•  Can be used for performance optimization

to improve resource utilization
Penn ESE532 Fall 2018 -- DeHon

9

FIFO
•  First In First Out
•  Delivers inputs to outputs in order
•  Data presence

– Consumer knows when data available
•  Back Pressure

– Producer knows when at capacity
•  Typically stalls

•  Decouples producer and consumer
processes
– Hardware: maybe even different clocks

Penn ESE532 Fall 2018 -- DeHon
10

Issues
•  Communication – how move data

between processes?
– What latency does this add?
– Throughput achievable?

•  Synchronization – how define how
processes advance relative to each
other?

•  Determinism – for the same inputs, do
we get the same outputs?

Penn ESE532 Fall 2018 -- DeHon
11

Today’s Stand

•  Communication – FIFO-like channels
•  Synchronization – dataflow with FIFOs
•  Determinism – how to achieve

– …until you must give it up.

Penn ESE532 Fall 2018 -- DeHon
12

3

Penn ESE532 Fall 2018 -- DeHon
13

Dataflow Process Model
Operation/Operator

•  Operation – logic computation to be
performed
– A process that communicates through

dataflow inputs and outputs
•  Operator – physical block that performs

an Operation
– E.g. processor, hardware block

Penn ESE532 Fall 2018 -- DeHon
14

Penn ESE532 Fall 2018 -- DeHon
15

Dataflow / Control Flow

Dataflow
•  Program is a graph

of operations
•  Operation consumes

tokens and
produces tokens

•  All operations run
concurrently
–  All processes

Control flow (e.g. C)
•  Program is a

sequence of
operations

•  Operation reads
inputs and writes
outputs into
common store

•  One operation runs
at a time
–  defines successor

Day 4

Penn ESE532 Fall 2018 -- DeHon
16

Token

•  Data value with presence indication
– May be conceptual

•  Only exist in high-level model
•  Not kept around at runtime

– Or may be physically represented
•  One bit represents presence/absence of data

Penn ESE532 Fall 2018 -- DeHon
17

Stream

•  Logical abstraction of a persistent point-
to-point communication link between
operators
– Has a (single) source and sink
– Carries data presence / flow control
– Provides in-order (FIFO) delivery of data

from source to sink

stream

Penn ESE532 Fall 2018 -- DeHon
18

Streams

•  Captures communications structure
– Explicit producer!consumer link up

•  Abstract communications
– Physical resources or implementation
– Delay from source to sink

•  Contrast
– C: producer->consumer implicit through memory
– Verilog/VHDL: cycles visible in implementation
–  (can add on top of either C or Verilog)

4

Streams

•  Stream: logical communication link
•  How might we implement:

– Two threads running on a single processor
(sharing common memory)?

– Two processes running on different
processors on the same die?

– Two processes running on different hosts
•  E.g. one at Penn, one on Amazon cloud

Penn ESE532 Fall 2018 -- DeHon
19

Dataflow Process Network

•  Collection of Operators
•  Connected by Streams
•  Communicating with Data Tokens
•  (CSP restricted to stream

communication)

Penn ESE532 Fall 2018 -- DeHon
20

Penn ESE532 Fall 2018 -- DeHon
21

Dataflow Abstracts Timing

•  Doesn’t say
–  on which cycle calculation occurs

•  Does say
–  What order operations occur in
–  How data interacts

•  i.e. which inputs get mixed together

•  Permits
–  Scheduling on different # and types of resources
–  Operators with variable delay
–  Variable delay in interconnect

Some Task Graphs

Penn ESE532 Fall 2018 -- DeHon
22

Penn ESE532 Fall 2018 -- DeHon
23

Synchronous Dataflow (SDF)
with fixed operators

•  Particular, restricted form of dataflow
•  Each operation

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
– Operator performs fixed number of

operations (in fixed time)
– When full set of inputs are available

•  Can produce output

– Can fire any (all) operations with inputs
available at any point in time

SDF Operator
FFT
•  1024 inputs
•  1024 outputs
•  10,240 multiplies
•  20,480 adds
•  (or 30,720 primitive

operations)

Penn ESE532 Fall 2018 -- DeHon
24

1024 1024

30,720

5

Processor Model

•  Simple (for today’s lecture)
– Assume one primitive operation per cycle

•  Could embelish
– Different time per operation type

•  E.g. adds: 1 cycle, multiply: 3 cycles

– Multiple memories with different timings

Penn ESE532 Fall 2018 -- DeHon
25

Time for Graph Iteration on
Processors

•  Single processor

•  One processor per Operator

•  General

Penn ESE532 Fall 2018 -- DeHon
26

€

Tone = Nopsi
i
∑

€

Teach = max(Nop1,Nop2,Nop3,…)

€

Tmap = max c(1,i) ×Nopsi
i
∑ , c(2,i) ×Nopsi

i
∑ , c(3,i) ×Nopsi

i
∑ ,…

⎛

⎝
⎜

⎞

⎠
⎟

c(x,y) – 1 if Processor x runs task y

Intel Xeon Phi Pricing

Penn ESE532 Fall 2018 -- DeHon
27

Intel Knights Landing

Penn ESE532 Fall 2018 -- DeHon
28

https://www.nextplatform.com/2016/06/20/intel-knights-landing-yields-big-bang-buck-jump/

[Intel, Micro 2016]

GRVI/Phallanx

•  Puts 1680 RISC-V32b Integer cores
•  On XCVU9P FPGA
•  http://fpga.org/2017/01/12/grvi-phalanx-joins-the-kilocore-club/

Penn ESE532 Fall 2018 -- DeHon
29 [Gray, FCCM 2016]

Map to different processors

•  Map to (preclass 1)
– One processor performance?
– One process per processor performance?
– Two processors

•  How?
•  Performance?

– Bottleneck?
Penn ESE532 Fall 2018 -- DeHon

30

30,000 15,000 3,000 2,000

6

Refine Data Parallel

•  If component is data parallel, can split
out parallel tasks

Penn ESE532 Fall 2018 -- DeHon
31

Refine Pipeline

•  If operation internally pipelineable,
break out pipeline into separate tasks

Penn ESE532 Fall 2018 -- DeHon
32

6,000 6,000 6,000 6,000 6,000

7,500 3,000

2,000

Performance with one processor per operator?
 Achieve same performance with how many processors?

Apple A11 Bionic

Penn ESE532 Fall 2018 -- DeHon
33

•  90mm2 10nm FinFET
•  4.3B transistors
•  iPhone 8, 8s, X
•  6 ARM cores (64b)

–  2 fast (2.4GHz)
–  4 low energy

•  3 custom GPUs
•  Neural Engine

–  600 Bops?

•  Motion, image accel.
•  8MB L2 cache

https://wccftech.com/apple-iphone-8-plus-a11-bionic-complete-teardown/ Penn ESE532 Fall 2018 -- DeHon
34

Heterogeneous Processor

•  GPU perform 10 primitive FFT Ops per cycle
•  Fast CPU can perform 2 ops/cycle
•  Slow CPU 1 op/cycle
•  Map: FFT to GPU, Select to 2 Fast CPUs,

quantize and Entropy each to own Slow CPU
•  Cycles/graph iteration?

Penn ESE532 Fall 2018 -- DeHon
35

30,000 15,000 3,000 2,000

Custom Accelerator
•  Dataflow Process doesn’t need to be

mapped to a processor
•  Map FFT to custom datapath on FPGA

logic
– Read and produce one element per cycle
– 1024 cycles to process 1024-point FFT

Penn ESE532 Fall 2018 -- DeHon
36

1024 15,000 3,000 2,000

7

Operations
•  Can be implemented on different

operators with different characteristics
– Small or large processor
– Hardware unit
– Different levels of internal

•  Data-level parallelism
•  Instruction-level parallelism
•  Pipeline parallelism

•  May itself be described as
– Dataflow process network, sequential,

hardware register transfer language
Penn ESE532 Fall 2018 -- DeHon

37

Add Delay

•  What do to computation if add an
operation that copies inputs to outputs
with some latency?
–  Impact on function?
– Througput impact if Identity operation has

•  Latency 10, throughput 1 value per cycle?
•  (reminder 1024 values between FFT and Select

Freq.)

Penn ESE532 Fall 2018 -- DeHon
38

15,000 3,000 2,000 30,000 1024

Communication Latency

•  Once map to
multiple processors

•  Need to move data
between processors

•  That costs time

Penn ESE532 Fall 2018 -- DeHon
39

On-Chip Delay
•  Delay is proportional to distance travelled
•  Make a wire twice the length

– Takes twice the latency to traverse
–  (can pipeline)

•  Modern chips
– Run at 100s of MHz to GHz
– Take 10s of ns to cross the chip

Penn ESE532 Fall 2018 -- DeHon
40

Day 3

Penn ESE532 Fall 2018 -- DeHon
41

Dataflow gives
Clock Independent Semantics

Interconnect
Takes n-clocks
Latency

Penn ESE532 Fall 2018 -- DeHon
42

Semantics

•  Need to implement semantics
–  i.e. get same result as if computed as

indicated
•  But can implement any way we want

– That preserves the semantics
– Exploit freedom of implementation

8

Basic
Approach

Penn ESE532 Fall 2018 -- DeHon
43

Approach (1)
•  Identify natural parallelism
•  Convert to streaming flow

–  Initially leave operations in software
– Focus on correctness

•  Identify flow rates, computation per
operator, parallelism needed

•  Refine operations
– Decompose further parallelism?
– E.g. data parallel split, ILP implementations
– model potential hardware

Penn ESE532 Fall 2018 -- DeHon
44

Approach (2)

•  Refine coordination as necessary for
implementation

•  Map operations and streams to
resources
– Provision hardware
– Scheduling: Map operations to operators
– Memories, interconnect

•  Profile and tune
•  Refine

Penn ESE532 Fall 2018 -- DeHon
45

Penn ESE532 Fall 2018 -- DeHon
46

Dataflow Variants

Turing Complete

•  Can implement any computation
describable with a Turing Machine
–  (theoretical model of computing by Alan

Turing)
•  Turing Machine – captures our notion of

what is computable
–  If it cannot be computed by a Turing

Machine, we don’t know how to compute it

Penn ESE532 Fall 2018 -- DeHon
47

Process Network Roundup

Model Deterministic
Result

Deterministic
Timing

Turing
Complete

SDF+fixed-delay
operators

Y Y N

SDF+variable
delay operators

Y N N

DDF blocking Y N Y
DDF non-
blocking

N N Y

Penn ESE532 Fall 2018 -- DeHon
48

9

Penn ESE532 Fall 2018 -- DeHon
49

Synchronous Dataflow (SDF)
with fixed operators

•  Particular, restricted form of dataflow
•  Each operation

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
– Operator performs fixed number of

operations (in fixed time)
– When full set of inputs are available

•  Can produce output

– Can fire any (all) operations with inputs
available at any point in time

Penn ESE532 Fall 2018 -- DeHon
50

Synchronous Dataflow (SDF)

•  Particular, restricted form of dataflow
•  Each operation

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
–  (can take variable computation for operator)
– When full set of inputs are available

•  Can produce output
– Can fire any (all) operations with inputs

available at any point in time

Penn ESE532 Fall 2018 -- DeHon
51

Multirate Synchronous Dataflow

•  Rates can be different
– Allow lower frequency operations
– Communicates rates to tools

•  Use in scheduling, provisioning

– Rates must be constant
•  Data independent

decimate
2 1

Penn ESE532 Fall 2018 -- DeHon
52

Dynamic Dataflow

•  (Less) restricted form of dataflow
•  Each operation

– Conditionally consume input based on data value
– Conditionally produce output based on data value
– When full set of inputs are available

•  Can (optionally) produce output

– Can fire any (all) operations with data-specified
necessary inputs available at any point in time

Blocking

•  Key to determinism: behavior doesn’t
depend on timing
– Cannot ask if a token is present

•  If (not_empty(in))
– Out.put(3);

•  Else
– Out.put(2);

Penn ESE532 Fall 2018 -- DeHon
53

Process Network Roundup

Model Deterministic
Result

Deterministic
Timing

Turing
Complete

SDF+fixed-delay
operators

Y Y N

SDF+variable
delay operators

Y N N

DDF blocking Y N Y
DDF non-
blocking

N N Y

Penn ESE532 Fall 2018 -- DeHon
54

10

Motivations and Demands
for Options
Time Permitting

Penn ESE532 Fall 2018 -- DeHon
55

Variable Delay Operators

•  What are example of variable delay
operators we might have?

Penn ESE532 Fall 2018 -- DeHon
56

Variable Delay Operators
•  Operators with Variable Delay

– Cached memory or computation
– Shift-and-add multiply
–  Iterative divide or square-root

Penn ESE532 Fall 2018 -- DeHon
57

GCD (Preclass 2)
•  What is delay of

GCD computation? •  while(a!=b)
–  t=max(a,b)-min(a,b)
–  a=min(a,b)
–  b=t

•  return(a);

Penn ESE532 Fall 2018 -- DeHon
58

Preclass 3

•  How long to process each input?
–  (for concrete example on preclass)

•  Correlation in delays?
•  What benefit from FIFO and processes?

Penn ESE532 Fall 2018 -- DeHon
59

Preclass 3
•  Independent probability of miss

– Pf, Pg

•  Concretely
– 1 cycle in map
– 100 run function and put in map

•  If each runs independently (in isolation)
– T~= 1*(1-P)+P*100

•  If run together in lock step
– Either can stall: P=Pf+Pg-PfPg

– T~= 1*(1-P)+(P)*100
Penn ESE532 Fall 2018 -- DeHon

60

11

Penn ESE532 Fall 2018 -- DeHon
61

Dynamic Rates?

•  When might static rates be limiting?
(prevent useful optimizations?)

Penn ESE532 Fall 2018 -- DeHon
62

Dynamic Rates?

•  Static Rates limiting
– Compress/decompress

•  Lossless
•  Even Run-Length-Encoding

– Filtering
•  Discard all packets from spamRus

– Anything data dependent

When non-blocking necessary?

•  What are cases where we need the
ability to ask if a data item is present?

•  Consider an IP packet router:

Penn ESE532 Fall 2018 -- DeHon
63

Non-Blocking

•  Removed model restriction
– Can ask if token present

•  Gained expressive power
– Can grab data as shows up

•  Weaken our guarantees
– Possible to get non-deterministic behavior

Penn ESE532 Fall 2018 -- DeHon
64

Process Network Roundup

Model Deterministic
Result

Deterministic
Timing

Turing
Complete

SDF+fixed-delay
operators

Y Y N

SDF+variable
delay operators

Y N N

DDF blocking Y N Y
DDF non-
blocking

N N Y

Penn ESE532 Fall 2018 -- DeHon
65

Big Ideas
•  Capture gross parallel structure with

Process Network
•  Use dataflow synchronization for

determinism
– Abstract out timing of implementations
– Give freedom of implementation

•  Exploit freedom to refine mapping to
optimize performance

•  Minimally use non-determinism as
necessary

Penn ESE532 Fall 2018 -- DeHon
66

12

Admin
•  Reading for Day 6 on web
•  HW3 due Friday
•  Boards

Penn ESE532 Fall 2018 -- DeHon
67

