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ESE532: 
System-on-a-Chip Architecture 

Day 5:  September 17, 2018 
Dataflow Process Model 
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Today 
Dataflow Process Model 
•  Terms 
•  Issues 
•  Abstraction 
•  Performance Prospects 
•  Basic Approach 
•  Dataflow variants 
•  Motivations/demands for variants 

–  If time permits 

Message 
•  Parallelism can be natural 
•  Expression can be agnostic to substrate 

– Abstract out implementation details 
– Tolerate variable delays may arise in 

implementation 
•  Divide-and-conquer 

– Start with coarse-grain streaming dataflow 
•  Basis for performance optimization and 

parallelism exploitation 
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Programmable SoC 
•  Implementation Platform for innovation 

– This is what you target (avoid NRE) 
–  Implementation 

 vehicle 
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Reminder 

•  Goal: 
exploit parallelism 
on heterogeneous 
PSoC to achieve 
desired performance 
(energy) 
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Term: Process 
•  Abstraction of a processor 
•  Looks like each process is running on a 

separate processor 
•  Has own state, including 

– Program Counter (PC) 
– Memory 
–  Input/output 

•  May not actually run on processor 
– Could be specialized hardware block 
– May share a processor 
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Thread 

•  Has a separate locus of control (PC) 
•  May share memory (contrast process) 

– Run in common address space with other 
threads 
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Model (from Day 3) 
Communicating Threads 

•  Computation is a collection of 
sequential/control-flow “threads” 

•  Threads may communicate 
– Through dataflow I/O 
–  (Through shared variables) 

•  View as hybrid or generalization 
•  CSP – Communicating Sequential 

Processes ! canonical model example 
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Process 
•  Processes allow expression of 

independent control 
•  Convenient for things that advance 

independently 
•  Process (thread) is the easiest way to 

express some behaviors 
– Easier than trying to describe as a single 

process 
•  Can be used for performance optimization 

to improve resource utilization 
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FIFO 
•  First In First Out 
•  Delivers inputs to outputs in order 
•  Data presence 

– Consumer knows when data available 
•  Back Pressure 

– Producer knows when at capacity 
•  Typically stalls 

•  Decouples producer and consumer 
processes 
– Hardware: maybe even different clocks 
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Issues 
•  Communication – how move data 

between processes? 
– What latency does this add? 
– Throughput achievable? 

•  Synchronization – how define how 
processes advance relative to each 
other? 

•  Determinism – for the same inputs, do 
we get the same outputs? 
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Today’s Stand 

•  Communication – FIFO-like channels 
•  Synchronization – dataflow with FIFOs 
•  Determinism – how to achieve 

– …until you must give it up. 
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Dataflow Process Model 
Operation/Operator 

•  Operation – logic computation to be 
performed 
– A process that communicates through 

dataflow inputs and outputs 
•  Operator – physical block that performs 

an Operation 
– E.g. processor, hardware block 
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Dataflow / Control Flow 

Dataflow 
•  Program is a graph 

of operations 
•  Operation consumes 

tokens and 
produces tokens 

•  All operations run 
concurrently 
–  All processes 

Control flow (e.g. C) 
•  Program is a 

sequence of 
operations 

•  Operation reads 
inputs and writes 
outputs into 
common store 

•  One operation runs 
at a time  
–  defines successor 

Day 4 
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Token 

•  Data value with presence indication 
– May be conceptual 

•  Only exist in high-level model 
•  Not kept around at runtime 

– Or may be physically represented 
•  One bit represents presence/absence of data 
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Stream 

•  Logical abstraction of a persistent point-
to-point communication link between 
operators 
– Has a (single) source and sink 
– Carries data presence / flow control 
– Provides in-order (FIFO) delivery of data 

from source to sink 

stream 
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Streams 

•  Captures communications structure 
– Explicit producer!consumer link up 

•  Abstract communications 
– Physical resources or implementation 
– Delay from source to sink 

•  Contrast 
– C: producer->consumer implicit through memory 
– Verilog/VHDL: cycles visible in implementation 
–  (can add on top of either C or Verilog)  
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Streams 

•  Stream: logical communication link 
•  How might we implement: 

– Two threads running on a single processor 
(sharing common memory)? 

– Two processes running on different 
processors on the same die? 

– Two processes running on different hosts 
•  E.g. one at Penn, one on Amazon cloud 
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Dataflow Process Network 

•  Collection of Operators 
•  Connected by Streams 
•  Communicating with Data Tokens 
•  (CSP restricted to stream 

communication) 
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Dataflow Abstracts Timing 

•  Doesn’t say  
–  on which cycle calculation occurs 

•  Does say 
–  What order operations occur in 
–  How data interacts 

•  i.e. which inputs get mixed together 

•  Permits 
–  Scheduling on different # and types of resources 
–  Operators with variable delay 
–  Variable delay in interconnect 

Some Task Graphs 
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Synchronous Dataflow (SDF) 
with fixed operators 

•  Particular, restricted form of dataflow 
•  Each operation 

– Consumes a fixed number of input tokens 
– Produces a fixed number of output tokens 
– Operator performs fixed number of 

operations (in fixed time) 
– When full set of inputs are available 

•  Can produce output 

– Can fire any (all) operations with inputs 
available at any point in time 

SDF Operator 
FFT 
•  1024 inputs 
•  1024 outputs 
•  10,240 multiplies 
•  20,480 adds 
•  (or 30,720 primitive 

operations) 
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1024 1024 

30,720 
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Processor Model 

•  Simple (for today’s lecture) 
– Assume one primitive operation per cycle 

•  Could embelish 
– Different time per operation type 

•  E.g. adds: 1 cycle, multiply: 3 cycles 

– Multiple memories with different timings 
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Time for Graph Iteration on 
Processors 

•  Single processor 

•  One processor per Operator 

•  General 
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c(x,y) – 1 if Processor x runs task y 

Intel Xeon Phi Pricing 
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Intel Knights Landing 
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https://www.nextplatform.com/2016/06/20/intel-knights-landing-yields-big-bang-buck-jump/ 

[Intel, Micro 2016] 

GRVI/Phallanx 

•  Puts 1680 RISC-V32b Integer cores  
•  On XCVU9P FPGA 
•  http://fpga.org/2017/01/12/grvi-phalanx-joins-the-kilocore-club/ 
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Map to different processors 

•  Map to (preclass 1) 
– One processor performance? 
– One process per processor performance? 
– Two processors 

•  How? 
•  Performance? 

– Bottleneck? 
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Refine Data Parallel 

•  If component is data parallel, can split 
out parallel tasks 
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Refine Pipeline 

•  If operation internally pipelineable,  
break out pipeline into separate tasks 
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6,000 6,000 6,000 6,000 6,000 

7,500 3,000 

2,000 

Performance with one processor per operator? 
   Achieve same performance with how many processors? 

Apple A11 Bionic 
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•  90mm2 10nm FinFET 
•  4.3B transistors 
•  iPhone 8, 8s, X 
•  6 ARM cores (64b) 

–  2 fast (2.4GHz) 
–   4 low energy 

•  3 custom GPUs  
•  Neural Engine 

–  600 Bops? 

•  Motion, image accel. 
•                8MB L2 cache 

https://wccftech.com/apple-iphone-8-plus-a11-bionic-complete-teardown/ Penn ESE532 Fall 2018 -- DeHon 
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Heterogeneous Processor 

•  GPU perform 10 primitive FFT Ops per cycle 
•  Fast CPU can perform 2 ops/cycle 
•  Slow CPU 1 op/cycle 
•  Map: FFT to GPU, Select to 2 Fast CPUs, 

quantize and Entropy each to own Slow CPU 
•  Cycles/graph iteration? 
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30,000 15,000 3,000 2,000 

Custom Accelerator 
•  Dataflow Process doesn’t need to be 

mapped to a processor 
•  Map FFT to custom datapath on FPGA 

logic 
– Read and produce one element per cycle 
– 1024 cycles to process 1024-point FFT 
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Operations 
•  Can be implemented on different 

operators with different characteristics 
– Small or large processor 
– Hardware unit 
– Different levels of internal  

•  Data-level parallelism 
•  Instruction-level parallelism 
•  Pipeline parallelism 

•  May itself be described as 
– Dataflow process network, sequential, 

hardware register transfer language 
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Add Delay 

•  What do to computation if add an 
operation that copies inputs to outputs 
with some latency? 
–  Impact on function? 
– Througput impact if Identity operation has 

•  Latency 10, throughput 1 value per cycle? 
•  (reminder 1024 values between FFT and Select 

Freq.) 
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Communication Latency 

•  Once map to 
multiple processors 

•  Need to move data 
between processors 

•  That costs time 
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On-Chip Delay 
•  Delay is proportional to distance travelled 
•  Make a wire twice the length 

– Takes twice the latency to traverse 
–  (can pipeline) 

•  Modern chips 
– Run at 100s of MHz to GHz 
– Take 10s of ns to cross the chip 
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Day 3 
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Dataflow gives  
Clock Independent Semantics 

Interconnect 
Takes n-clocks 
Latency 
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Semantics 

•  Need to implement semantics 
–  i.e. get same result as if computed as 

indicated 
•  But can implement any way we want 

– That preserves the semantics 
– Exploit freedom of implementation 
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Basic 
Approach 
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Approach (1) 
•  Identify natural parallelism 
•  Convert to streaming flow 

–  Initially leave operations in software 
– Focus on correctness 

•  Identify flow rates, computation per 
operator, parallelism needed 

•  Refine operations 
– Decompose further parallelism? 
– E.g. data parallel split, ILP implementations 
– model potential hardware 
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Approach (2) 

•  Refine coordination as necessary for 
implementation 

•  Map operations and streams to 
resources 
– Provision hardware 
– Scheduling: Map operations to operators 
– Memories, interconnect 

•  Profile and tune 
•  Refine 
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Dataflow Variants 

Turing Complete 

•  Can implement any computation 
describable with a Turing Machine 
–  (theoretical model of computing by Alan 

Turing) 
•  Turing Machine – captures our notion of 

what is computable 
–  If it cannot be computed by a Turing 

Machine, we don’t know how to compute it 
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Process Network Roundup 

Model Deterministic 
Result 

Deterministic 
Timing 

Turing 
Complete 

SDF+fixed-delay 
operators 

Y Y N 

SDF+variable 
delay operators 

Y N N 

DDF blocking Y N Y 
DDF non-
blocking 

N N Y 
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Synchronous Dataflow (SDF) 
with fixed operators 

•  Particular, restricted form of dataflow 
•  Each operation 

– Consumes a fixed number of input tokens 
– Produces a fixed number of output tokens 
– Operator performs fixed number of 

operations (in fixed time) 
– When full set of inputs are available 

•  Can produce output 

– Can fire any (all) operations with inputs 
available at any point in time 
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Synchronous Dataflow (SDF) 

•  Particular, restricted form of dataflow 
•  Each operation 

– Consumes a fixed number of input tokens 
– Produces a fixed number of output tokens 
–  (can take variable computation for operator) 
– When full set of inputs are available 

•  Can produce output 
– Can fire any (all) operations with inputs 

available at any point in time 
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Multirate Synchronous Dataflow 

•  Rates can be different 
– Allow lower frequency operations 
– Communicates rates to tools 

•  Use in scheduling, provisioning 

– Rates must be constant 
•  Data independent 

decimate 
2 1 
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Dynamic Dataflow 

•  (Less) restricted form of dataflow 
•  Each operation 

– Conditionally consume input based on data value 
– Conditionally produce output based on data value 
– When full set of inputs are available 

•  Can (optionally) produce output 

– Can fire any (all) operations with data-specified 
necessary inputs available at any point in time 

Blocking 

•  Key to determinism: behavior doesn’t 
depend on timing 
– Cannot ask if a token is present 

•  If (not_empty(in)) 
– Out.put(3); 

•  Else 
– Out.put(2); 
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Process Network Roundup 

Model Deterministic 
Result 

Deterministic 
Timing 

Turing 
Complete 

SDF+fixed-delay 
operators 

Y Y N 

SDF+variable 
delay operators 

Y N N 

DDF blocking Y N Y 
DDF non-
blocking 

N N Y 
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Motivations and Demands  
for Options 
Time Permitting 
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Variable Delay Operators 

•  What are example of variable delay 
operators we might have? 
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Variable Delay Operators 
•  Operators with Variable Delay 

– Cached memory or computation 
– Shift-and-add multiply 
–  Iterative divide or square-root 
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GCD (Preclass 2) 
•  What is delay of 

GCD computation? •  while(a!=b) 
–  t=max(a,b)-min(a,b) 
–  a=min(a,b) 
–  b=t 

•  return(a); 
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Preclass 3 

•  How long to process each input? 
–  (for concrete example on preclass) 

•  Correlation in delays? 
•  What benefit from FIFO and processes? 
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Preclass 3 
•  Independent probability of miss 

– Pf, Pg 

•  Concretely 
– 1 cycle in map 
– 100 run function and put in map 

•  If each runs independently (in isolation) 
– T~= 1*(1-P)+P*100 

•  If run together in lock step 
– Either can stall: P=Pf+Pg-PfPg 

– T~= 1*(1-P)+(P)*100 
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Dynamic Rates? 

•  When might static rates be limiting? 
(prevent useful optimizations?) 

Penn ESE532 Fall 2018 -- DeHon 
62 

Dynamic Rates? 

•  Static Rates limiting 
– Compress/decompress 

•  Lossless 
•  Even Run-Length-Encoding 

– Filtering 
•  Discard all packets from spamRus 

– Anything data dependent 

When non-blocking necessary? 

•  What are cases where we need the 
ability to ask if a data item is present? 

•  Consider an IP packet router: 
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Non-Blocking 

•  Removed model restriction  
– Can ask if token present 

•  Gained expressive power 
– Can grab data as shows up 

•  Weaken our guarantees 
– Possible to get non-deterministic behavior 
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Process Network Roundup 

Model Deterministic 
Result 

Deterministic 
Timing 

Turing 
Complete 

SDF+fixed-delay 
operators 

Y Y N 

SDF+variable 
delay operators 

Y N N 

DDF blocking Y N Y 
DDF non-
blocking 

N N Y 
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Big Ideas 
•  Capture gross parallel structure with 

Process Network 
•  Use dataflow synchronization for 

determinism 
– Abstract out timing of implementations 
– Give freedom of implementation 

•  Exploit freedom to refine mapping to 
optimize performance 

•  Minimally use non-determinism as 
necessary 
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Admin 
•  Reading for Day 6 on web 
•  HW3 due Friday 
•  Boards 
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