

Today

- **Dataflow Process Model**
- Terms
- Issues
- Abstraction
- Performance Prospects
- Basic Approach
- Dataflow variants
- Motivations/demands for variants

2

- If time permits

- Tolerate variable delays may arise in implementation
- Divide-and-conquer

n ESE532 Fall 2018 -- DeHon

- Start with coarse-grain streaming dataflow
- Basis for performance optimization and parallelism exploitation

Thread

- Has a separate locus of control (PC)
- May share memory (contrast process)

 Run in common address space with other threads

Penn ESE532 Fall 2018 -- DeHon

Model (from Day 3) Communicating Threads

- Computation is a collection of sequential/control-flow "threads"
- Threads may communicate
 Through dataflow I/O
 - (Through shared variables)
- · View as hybrid or generalization
- CSP Communicating Sequential Processes → canonical model example

enn ESE532 Fall 2018 -- DeHon

7

11

Process

- Processes allow expression of independent control
- Convenient for things that advance independently
- Process (thread) is the easiest way to express some behaviors
 - Easier than trying to describe as a single process
- Can be used for performance optimization to improve resource utilization
 9

FIFO

• First In First Out

nn ESE532 Fall 2018 -- DeHon

- · Delivers inputs to outputs in order
- Data presence
 Consumer knows when data available
- Back Pressure
 Producer knows when at capacity
 Typically stalls
- Decouples producer and consumer processes

– Hardware: maybe even different clocks 10

Issues

- Communication how move data between processes?
 - What latency does this add?
 - Throughput achievable?
- Synchronization how define how processes advance relative to each other?
- **Determinism** for the same inputs, do we get the same outputs?

Penn ESE532 Fall 2018 -- DeHon

Today's Stand

Communication – FIFO-like channels
Synchronization – dataflow with FIFOs
Determinism – how to achieve

...until you must give it up.

2

Intel Xeon Phi Pricing							
	HOOSE \	/OUR	optimi	ZATIO	N POIN	IT	
XEON PHI inside	F INTEGRATED						RECOMMENDED
IUZNIG.	CORES		MEMORY	FABRIC	DDR4	POWER ²	CUSTOMER Pricing
7290 ¹ Best Performance/Node	72	1.5	16GB 7.2 GT/s	Yes	384GB 2400 MHz	245W	\$6254
7250 Best Performance/Watt	68	1.4	16GB 7.2 GT/s	Yes	384GB 2400 MHz	215W	\$4876
7230 Best Memory Bandwidth/Core	64	1.3	16GB 7.2 GT/s	Yes	384GB 2400 MHz	215W	\$3710
7210 Best Value	64	1.3	16GB 6.4 GT/s	Yes	384GB 2133 MHz	215W	\$2438
Weakable beginning in September 7 Plus 19W for integrated 1	804c						(intel

Synchronous Dataflow (SDF)

- · Particular, restricted form of dataflow
- Each operation
 - Consumes a fixed number of input tokens
 - Produces a fixed number of output tokens
 - (can take variable computation for operator)

50

- When full set of inputs are available
- Can produce output
- Can fire any (all) operations with inputs

available at any point in time

Admin

- Reading for Day 6 on web
- HW3 due Friday
- Boards

Penn ESE532 Fall 2018 -- DeHon