
1

Penn ESE532 Fall 2018 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 9: October 1, 2018
Real Time

Penn ESE532 Fall 2018 -- DeHon 2

Today
Real Time
•  Demands
•  Challenges

– Algorithms
– Architecture

•  Disciplines to achieve

Message
•  Real-Time applications demand

different discipline from best-effort tasks
•  Look more like synchronous circuits
•  Can sequentialize, like processor

– But must avoid/rethink typical general-
purpose processor common-case
optimizations

Penn ESE532 Fall 2018 -- DeHon 3

Real Time

•  “Real” – refers to physical time
– Connection to Real or Physical World

•  Contrast with “virtual” or “variable” time
•  Handles events with absolute

guarantees on timing

Penn ESE532 Fall 2018 -- DeHon 4

Real-Time Tasks
•  What timing guarantees might you like

for the following tasks?
– Push a fire button on a video game

•  Delay to recognize and shoots bullet

– Turn steering wheel on a drive-by-wire car
•  Delay to recognized and car turns

– Self-driving car detects an object in its path
•  Delay from object appearing to detection

– Pacemaker stimulates your heart
– Video playback (frame to frame delay)

Penn ESE532 Fall 2018 -- DeHon 5

Real-Time Guarantees

•  Attention/processing within fixed interval
– Sample new value every XX ms
– Produce new frame every 30 ms
– Both: schedule to act and complete action

•  Bounded response time
– Respond to keypress within 20 ms
– Detect object within 100 ms
– Return search results within 200 ms

Penn ESE532 Fall 2018 -- DeHon 6

2

Computer Response

•  What do these things indicate?
– When will the computer complete the task?

Penn ESE532 Fall 2018 -- DeHon 7

https://en.wikipedia.org/wiki/File:WaitCursor-300p.gif
https://en.wikipedia.org/wiki/File:Windows_8_%2B_10_wait_cursor.gif

Real-Time Reponse

•  What if your car gave you a spinning
wait wheel for 5 seconds when you
– Turned the wheel?
– Stepped on the brakes?

Penn ESE532 Fall 2018 -- DeHon 8

Synchronous Circuit Model
•  A simple synchronous circuit is a good

“model” for real-time task
– Run at fixed clock rate
– Take input every “cycle”
– Produce output every “cycle”
– Complete computation between input and

output
– Designed to run at fixed-frequency

•  Critical path meets frequency requirement
Penn ESE532 Fall 2018 -- DeHon 9

Preclass 2
•  Worst-case delay from (L)eft press to

change in heading?
•  Cycle rate could operate?

Penn ESE532 Fall 2018 -- DeHon 10

cos

sin

h
e
a
d
in

g
sp

e
e
d

posy

posx

sdelta sdelta

hdelta hdelta

(L)eft

(R)ight

(B)rake

(A)ccelerate

Controller
Inputs

Simulated
Position
(or physical
 location)

Historically

•  Real-Time concerns grew up in EE
– Because an analog circuit was the only

way could meet frequency demands
– …later a dedicated digital circuit…

•  Applications
– Signal processing, video, control, …

Penn ESE532 Fall 2018 -- DeHon 11

Technological Change

•  Why not be satisfied with this answer
today?
– That is, for real-time task need dedicated

synchronous circuit?
– Hint: What does preclass 2b suggest?

Penn ESE532 Fall 2018 -- DeHon 12

3

Performance Scaling
•  As circuit speeds increased

– Can meet real-time performance demands
with heavy sequentialization

•  Circuit and processor clocks
–  from MHz to GHz

•  Many real-time task rates unchanged
– 44KHz audio, 33 frames/second video

•  Even 100MHz processor
– Can implement audio in a small fraction of

its computational throughput capacity
Penn ESE532 Fall 2018 -- DeHon 13

HW/SW Co-Design

•  Computer Engineers – know can
implement anything as hardware or
software

•  Want freedom to move between
hardware and software to meet
requirements
– Performance, costs, energy

Penn ESE532 Fall 2018 -- DeHon 14

Real-Time Challenge

•  Meet real-time demands / guarantees
– Economically using programmable

architectures
•  Sequentialize and share resources with

deterministic, guaranteed timing

Penn ESE532 Fall 2018 -- DeHon 15

Processor Data Caches
•  Traditional Processor Data Caches are

a heuristic instance of this
– Add a small memory local to the processor

•  It is fast, low latency

– Store anything fetched from large/remote
memory in local memory
•  Hoping for reuse in near future

– On every fetch, check local memory before
go to large memory

Penn ESE532 Fall 2018 -- DeHon 16

Day 3

Processor Data Caches
•  Demands more than a small memory

– Need to sparsely store address/data
mappings from large memory

– Makes more area/delay/energy expensive
than just a simple memory of capacity

•  Don’t need explicit data movement
•  Cannot control when data moved/saved

– Bad for determinism
•  Limited ability to control what stays in

small memory simultaneously
Penn ESE532 Fall 2018 -- DeHon 17

Day 3
Processor Data Caches

•  Traditional Processor Data Caches are
a heuristic instance of this
– Store anything fetched from large/remote

memory in local memory
•  Hoping for reuse in near future

– On every fetch, check local memory before
go to large memory

– Stall processor while waiting for data

Penn ESE532 Fall 2018 -- DeHon 18

4

Preclass 3:
Processor Cache Timing

•  Assume
– cache miss (go to large memory) takes 10

cycles
– Cache hit (small memory) takes 1
– Start with empty cache

•  Due to memory delay, how long to execute:

Penn ESE532 Fall 2018 -- DeHon 19

b=a[0]+a[1];
c=a[1]+a[2];
d=a[2]+a[0];

b=a[i]+a[j];
c=a[k]+a[l];
d=a[m]+a[n];

Observe

•  Instructions on “General Purpose”
processors take variable number of
cycles

Penn ESE532 Fall 2018 -- DeHon 20

Preclass 4

•  How many cycles?
– sin, cos 100 cycles each
– Assignments 1

Penn ESE532 Fall 2018 -- DeHon 21

 old_sh=sh; old_ch=ch;
 if (!left || !right)
 {sh=old_sh;ch=old_ch;}
 else
 {sh=sine(heading);
 ch=cosine(heading);}

Preclass 5

•  How many cycles?

Penn ESE532 Fall 2018 -- DeHon 22

Preclass 5

•  How many cycles?

Penn ESE532 Fall 2018 -- DeHon 23

Observe

•  Data-dependent branching, looping
– Means variable time for operations

Penn ESE532 Fall 2018 -- DeHon 24

5

Two Challenges
1.  Architecture – Hardware have variable

(data-dependent) delay
– Esp. for General-Purpose processors

•  Instructions take different number of cycles

2.  Algorithm – computational specification
have variable (data-dependent)
operations
– Different number of instructions

Penn ESE532 Fall 2018 -- DeHon 25

€

Time = Cycles(i)
i
∑

Algorithm

•  What programming constructs are data-
dependent (variable delay)?

Penn ESE532 Fall 2018 -- DeHon 26

Programming Constructs
•  Conditionals: if/then/else
•  Loops without compile-time determined

bounds
– While with termination expressions
– For with data-dependent bounds

•  Data-dependent recursion
•  Interrupts

–  I/O events, time-slice

Penn ESE532 Fall 2018 -- DeHon 27

Programming Constructs

•  Dynamic Dataflow (from Day 5)
– Variable rates
– Switch/select operators

Penn ESE532 Fall 2018 -- DeHon 28

Architecture

•  What processor constructs are variable
delay?

Penn ESE532 Fall 2018 -- DeHon 29

Processor Variable Delay
•  Caches
•  Dynamic arbitration for shared

resources
– Bus, I/O, Crossbar output, memory, …

•  Data hazards
•  Data-dependent branching / branch

delays
•  Speculative issue

– Out-of-Order, branch prediction
Penn ESE532 Fall 2018 -- DeHon 30

6

Hardware Architecture

•  Some typical (371, 501) processor
“optimizations” can cause variable delay
– Caches
– Common-case optimizations
– Pipeline stalls

Penn ESE532 Fall 2018 -- DeHon 31

What can we do
to make architecture more

deterministic?
•  Explicitly managed memory
•  Eliminate Branching (too severe?)
•  Unpipelined processors
•  Fixed-delay pipelines

– Offline-scheduled resource sharing
– Multi-threaded

•  Deadlines
Penn ESE532 Fall 2018 -- DeHon 32

Explicitly Managed Memory
•  Make memory hierarchy visible

– Use Scratchpad memories instead of caches
•  Explicitly move data between memories

– E.g. movement into local memory
•  Already do for Register File in Processor

– Load/store between memory and RF slot
– …but don’t do for memory hierarchy

Penn ESE532 Fall 2018 -- DeHon 33

Explicitly Managed Memory

Penn ESE532 Fall 2018 -- DeHon 34

Offline Schedule Resource
Sharing

•  Don’t arbitrate
•  Decide up-front when each shared

resource can be used by each thread or
processor
– Simple fixed schedule
– Detailed Schedule

•  What
– Memory bank, bus, I/O, network link, …

Penn ESE532 Fall 2018 -- DeHon 35

Time-Multiplexed Bus
Fixed by hardware master
•  4 masters share a bus
•  Each master gets to

make a request on the
bus every 4th cycle
–  If doesn’t use it, goes idle

Penn ESE532 Fall 2018 -- DeHon 36

7

Time-Multiplexed Bus
•  Regular schedule
•  Fixed bus slot schedule of length N >

masters
–  (probably a multiple)

•  Assign owner for each slot
– Can assign more slots to one

•  E.g. N=8, for 4 masters
– Schedule (1 2 1 3 1 2 1 4)

Penn ESE532 Fall 2018 -- DeHon 37

Fully Scheduled

•  At extreme, fully schedule which tasks
gets resource on each cycle

Penn ESE532 Fall 2018 -- DeHon 38

Simple Deterministic
Processor

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

Penn ESE532 Fall 2018 -- DeHon 39

•  No branching
•  Unpipelined
•  Every operation

completes in fixed time

•  Cycle time?

Simple Deterministic
Processor with Multiplier

Penn ESE532 Fall 2018 -- DeHon 40

•  No branching
•  Unpipelined
•  Every operation

completes in fixed time

•  Cycle time?

•  What’s unfortunate
about this?

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

Simple Deterministic Processor
with some Pipelining

Penn ESE532 Fall 2018 -- DeHon 41

•  No branching
•  Every operation

completes in fixed time

•  Retimed cycle time?

•  How pipelines added
change behavior?

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

Simple Deterministic
Pipelined Processor

Penn ESE532 Fall 2018 -- DeHon 42

•  No branching
•  Every operation

completes in fixed time

•  Retimed cycle time?

•  How pipelines added
change behavior?
•  Hint R1 value

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

8

Multithreaded Processor

Penn ESE532 Fall 2018 -- DeHon 43

•  No branching
•  Every operation

completes in fixed time
•  Retimed cycle time
•  Each PC (color) is a

separate thread
•  How interact?
•  What does this act like?
•  Compare unpipe?

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

PC0

PC1
PC2
PC3

0
1
2
3

(all registers;
coloring to
show separation)

(all memories,
coloring to
show separation)

(all memories,
coloring to
show separation)

used as high
bits of address

use as high bits
for each address
(3 addresses)

constants
0 through 3
in shift register

Branching?

•  Could add
branching

•  Architecture
deterministic

•  Need to reason
about variable
timing from
branching

Penn ESE532 Fall 2018 -- DeHon 44

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

+1 0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

PC0

PC1
PC2
PC3

0
1
2
3

0.1ns

Multithreaded Pipeline
•  Non-real-time threads

can share
•  Timing of threads not

impact each other
•  Non-real-time threads

take variable time
– Not interfere with real-

time thread slots

Penn ESE532 Fall 2018 -- DeHon 45

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

+1 0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

PC0

PC1
PC2
PC3

0
1
2
3

0.1ns

Deadline Instruction
•  Deal with algorithmic (branching)

variability
•  Set a hardware counter for thread
•  Demand counter reach 0 before thread

allowed to continue at deadline instruction
•  Model: fixed rate of attention

– Stall if get there early
– Similar to flip-flop on a logic path

•  Wait for clock edge to change or sample value

•  Model: fixed execution time
Penn ESE532 Fall 2018 -- DeHon 46

WCET
•  WCET – Worst-Case Execution Time
•  Analysis when working with algorithms and

architectures with data-dependent delay
– Need to meet real time
– Calculate the worst-case runtime of a task

•  Like calculating the critical path (but harder)
•  Worst-case delay of instructions
•  Worst-case path through code
•  Worst-case # loop iterations

– Rationale for setting Deadlines
•  (like a cycle time)

Penn ESE532 Fall 2018 -- DeHon 47

Deterministic Pipelines
•  Not how ARM, Intel (371, 501)

processor are piplined
•  Those include operations that make

timing variable
–  dynamic data hazards, branch speculation

•  Here, data becomes available after a
predictable time

•  Branches take effect at a fixed time
– Likely delayed

•  Schedule to delays to get correct data
Penn ESE532 Fall 2018 -- DeHon 48

9

Different Goals

Real-Time
•  Willing to recompile to

new hardware
•  Want time on

hardware predictable
•  Willing to schedule for

delays in particular
hardware

General Purpose/Best Effort
•  ISA fixed
•  Want to run same

assembly on different
implementations

•  Tolerate different delays
for different hardware

•  Run faster on newer,
larger implementations

Penn ESE532 Fall 2018 -- DeHon 49

SoC Opportunity

•  Can choose which resources are
shared

•  Can dedicate resources to tasks
•  Isolate real-time tasks/portions of tasks

from best-effort
– Separate hardware/processors
– Separate memories, network

Penn ESE532 Fall 2018 -- DeHon 50

Penn ESE532 Fall 2018 -- DeHon 51

Big Ideas:
•  Real-Time applications demand

different discipline from best-effort tasks
•  Look more like synchronous circuits and

hardware discipline
•  Avoid or use care with variable delay

programming constructs
•  Can sequentialize, like processor

– But must avoid/rethink typical processor
common-case optimizations

– Offline calculate static schedule for
computation and sharing
•  Instead of dynamic arbitration, interlocks Penn ESE532 Fall 2018 -- DeHon 52

Admin
•  Wednesday/Day 10 reading on Canvas

+ Zynq Book
•  We are here Wednesday

– Do have office hours Monday, Tuesday
•  Fall Break – Thursday and Friday

– No Office Hours Thursday (10/4)
– No HW due this Friday (10/5)

•  HW5 due 10/12
– Will involve some long Vivado HLS/SDSoC

tool times

