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ESE532: 
System-on-a-Chip Architecture 

Day 9:  October 1, 2018 
Real Time 
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Today 
Real Time 
•  Demands 
•  Challenges 

– Algorithms 
– Architecture 

•  Disciplines to achieve 

Message 
•  Real-Time applications demand 

different discipline from best-effort tasks 
•  Look more like synchronous circuits 
•  Can sequentialize, like processor 

– But must avoid/rethink typical general-
purpose processor common-case 
optimizations 
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Real Time 

•  “Real” – refers to physical time 
– Connection to Real or Physical World 

•  Contrast with “virtual” or “variable” time 
•  Handles events with absolute 

guarantees on timing 
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Real-Time Tasks 
•  What timing guarantees might you like 

for the following tasks? 
– Push a fire button on a video game 

•  Delay to recognize and shoots bullet 

– Turn steering wheel on a drive-by-wire car 
•  Delay to recognized and car turns 

– Self-driving car detects an object in its path 
•  Delay from object appearing to detection 

– Pacemaker stimulates your heart 
– Video playback (frame to frame delay) 
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Real-Time Guarantees 

•  Attention/processing within fixed interval 
– Sample new value every XX ms 
– Produce new frame every 30 ms 
– Both: schedule to act and complete action 

•  Bounded response time 
– Respond to keypress within 20 ms 
– Detect object within 100 ms 
– Return search results within 200 ms 

Penn ESE532 Fall 2018 -- DeHon 6 



2 

Computer Response 

•  What do these things indicate? 
– When will the computer complete the task? 
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https://en.wikipedia.org/wiki/File:WaitCursor-300p.gif 
https://en.wikipedia.org/wiki/File:Windows_8_%2B_10_wait_cursor.gif 

Real-Time Reponse 

•  What if your car gave you a spinning 
wait wheel for 5 seconds when you 
– Turned the wheel? 
– Stepped on the brakes? 
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Synchronous Circuit Model 
•  A simple synchronous circuit is a good 

“model” for real-time task 
– Run at fixed clock rate 
– Take input every “cycle” 
– Produce output every “cycle” 
– Complete computation between input and 

output 
– Designed to run at fixed-frequency 

•  Critical path meets frequency requirement 
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Preclass 2 
•  Worst-case delay from (L)eft press to 

change in heading? 
•  Cycle rate could operate? 
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Historically 

•  Real-Time concerns grew up in EE 
– Because an analog circuit was the only 

way could meet frequency demands 
– …later a dedicated digital circuit… 

•  Applications 
– Signal processing, video, control, … 
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Technological Change 

•  Why not be satisfied with this answer 
today? 
– That is, for real-time task need dedicated 

synchronous circuit? 
– Hint: What does preclass 2b suggest? 
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Performance Scaling 
•  As circuit speeds increased 

– Can meet real-time performance demands 
with heavy sequentialization 

•  Circuit and processor clocks  
–  from MHz to GHz 

•  Many real-time task rates unchanged 
– 44KHz audio, 33 frames/second video 

•  Even 100MHz processor 
– Can implement audio in a small fraction of 

its computational throughput capacity 
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HW/SW Co-Design 

•  Computer Engineers – know can 
implement anything as hardware or 
software 

•  Want freedom to move between 
hardware and software to meet 
requirements 
– Performance, costs, energy 
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Real-Time Challenge 

•  Meet real-time demands / guarantees 
– Economically using programmable 

architectures 
•  Sequentialize and share resources with 

deterministic, guaranteed timing 
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Processor Data Caches 
•  Traditional Processor Data Caches are 

a heuristic instance of this 
– Add a small memory local to the processor 

•  It is fast, low latency 

– Store anything fetched from large/remote 
memory in local memory 
•  Hoping for reuse in near future 

– On every fetch, check local memory before 
go to large memory 
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Day 3 

Processor Data Caches 
•  Demands more than a small memory 

– Need to sparsely store address/data 
mappings from large memory 

– Makes more area/delay/energy expensive 
than just a simple memory of capacity 

•  Don’t need explicit data movement 
•  Cannot control when data moved/saved 

– Bad for determinism 
•  Limited ability to control what stays in 

small memory simultaneously 
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Day 3 
Processor Data Caches 

•  Traditional Processor Data Caches are 
a heuristic instance of this 
– Store anything fetched from large/remote 

memory in local memory 
•  Hoping for reuse in near future 

– On every fetch, check local memory before 
go to large memory 

– Stall processor while waiting for data 
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Preclass 3:  
Processor Cache Timing 

•  Assume  
– cache miss (go to large memory) takes 10 

cycles 
– Cache hit (small memory) takes 1 
– Start with empty cache 

•  Due to memory delay, how long to execute: 
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b=a[0]+a[1]; 
c=a[1]+a[2]; 
d=a[2]+a[0]; 

b=a[i]+a[j]; 
c=a[k]+a[l]; 
d=a[m]+a[n]; 

Observe 

•  Instructions on “General Purpose” 
processors take variable number of 
cycles 
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Preclass 4 

•  How many cycles? 
– sin, cos 100 cycles each 
– Assignments 1 
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  old_sh=sh; old_ch=ch;
   if (!left || !right) 
        {sh=old_sh;ch=old_ch;}
   else 
        {sh=sine(heading); 
         ch=cosine(heading);}

Preclass 5 

•  How many cycles? 
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Preclass 5 

•  How many cycles? 
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Observe 

•  Data-dependent branching, looping 
– Means variable time for operations 
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Two Challenges 
1.  Architecture – Hardware have variable 

(data-dependent) delay 
– Esp. for General-Purpose processors 

•  Instructions take different number of cycles 

2.  Algorithm – computational specification 
have variable (data-dependent) 
operations 
– Different number of instructions 
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Time = Cycles(i)
i
∑

Algorithm 

•  What programming constructs are data-
dependent (variable delay)? 
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Programming Constructs 
•  Conditionals: if/then/else 
•  Loops without compile-time determined 

bounds 
– While with termination expressions 
– For with data-dependent bounds 

•  Data-dependent recursion 
•  Interrupts 

–  I/O events, time-slice 
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Programming Constructs 

•  Dynamic Dataflow (from Day 5) 
– Variable rates 
– Switch/select operators 
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Architecture 

•  What processor constructs are variable 
delay? 
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Processor Variable Delay 
•  Caches 
•  Dynamic arbitration for shared 

resources 
– Bus, I/O, Crossbar output, memory, … 

•  Data hazards 
•  Data-dependent branching / branch 

delays 
•  Speculative issue 

– Out-of-Order, branch prediction 
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Hardware Architecture 

•  Some typical (371, 501) processor 
“optimizations” can cause variable delay 
– Caches 
– Common-case optimizations 
– Pipeline stalls 

Penn ESE532 Fall 2018 -- DeHon 31 

What can we do 
to make architecture more 

deterministic? 
•  Explicitly managed memory 
•  Eliminate Branching (too severe?) 
•  Unpipelined processors 
•  Fixed-delay pipelines 

– Offline-scheduled resource sharing 
– Multi-threaded 

•  Deadlines 
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Explicitly Managed Memory 
•  Make memory hierarchy visible 

– Use Scratchpad memories instead of caches 
•  Explicitly move data between memories 

– E.g. movement into local memory 
•  Already do for Register File in Processor 

– Load/store between memory and RF slot 
– …but don’t do for memory hierarchy 
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Explicitly Managed Memory 
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Offline Schedule Resource 
Sharing 

•  Don’t arbitrate 
•  Decide up-front when each shared 

resource can be used by each thread or 
processor 
– Simple fixed schedule 
– Detailed Schedule 

•  What 
– Memory bank, bus, I/O, network link, … 
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Time-Multiplexed Bus 
Fixed by hardware master 
•  4 masters share a bus 
•  Each master gets to 

make a request on the 
bus every 4th cycle 
–  If doesn’t use it, goes idle 
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Time-Multiplexed Bus 
•  Regular schedule 
•  Fixed bus slot schedule of length N > 

masters 
–  (probably a multiple) 

•  Assign owner for each slot 
– Can assign more slots to one  

•  E.g. N=8, for 4 masters 
– Schedule (1 2 1 3 1 2 1 4) 
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Fully Scheduled 

•  At extreme, fully schedule which tasks 
gets resource on each cycle 
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Simple Deterministic 
Processor  
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•  No branching 
•  Unpipelined 
•  Every operation 

completes in fixed time 

•  Cycle time? 

Simple Deterministic 
Processor with Multiplier 
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•  No branching 
•  Unpipelined 
•  Every operation 

completes in fixed time 

•  Cycle time? 

•  What’s unfortunate 
about this? 
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Simple Deterministic Processor 
with some Pipelining 
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•  No branching 
•  Every operation 

completes in fixed time 

•  Retimed cycle time? 

•  How pipelines added 
change behavior? 
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Simple Deterministic  
Pipelined Processor 
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•  No branching 
•  Every operation 

completes in fixed time 

•  Retimed cycle time? 

•  How pipelines added 
change behavior? 
•  Hint R1 value 
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Multithreaded Processor 
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•  No branching 
•  Every operation 

completes in fixed time 
•  Retimed cycle time 
•  Each PC (color) is a 

separate thread 
•  How interact? 
•  What does this act like? 
•  Compare unpipe? 
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Branching? 

•  Could add 
branching 

•  Architecture 
deterministic 

•  Need to reason 
about variable 
timing from 
branching 
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Multithreaded Pipeline 
•  Non-real-time threads 

can share 
•  Timing of threads not 

impact each other 
•  Non-real-time threads 

take variable time 
– Not interfere with real-

time thread slots 
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Deadline Instruction 
•  Deal with algorithmic (branching) 

variability 
•  Set a hardware counter for thread 
•  Demand counter reach 0 before thread 

allowed to continue at deadline instruction 
•  Model: fixed rate of attention 

– Stall if get there early 
– Similar to flip-flop on a logic path  

•  Wait for clock edge to change or sample value 

•  Model: fixed execution time 
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WCET 
•  WCET – Worst-Case Execution Time 
•  Analysis when working with algorithms and 

architectures with data-dependent delay 
– Need to meet real time 
– Calculate the worst-case runtime of a task 

•  Like calculating the critical path (but harder) 
•  Worst-case delay of instructions 
•  Worst-case path through code 
•  Worst-case # loop iterations 

– Rationale for setting Deadlines  
•  (like a cycle time) 
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Deterministic Pipelines 
•  Not how ARM, Intel (371, 501) 

processor are piplined 
•  Those include operations that make 

timing variable 
–   dynamic data hazards, branch speculation 

•  Here, data becomes available after a 
predictable time 

•  Branches take effect at a fixed time 
– Likely delayed 

•  Schedule to delays to get correct data 
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Different Goals 

Real-Time 
•  Willing to recompile to 

new hardware 
•  Want time on 

hardware predictable 
•  Willing to schedule for 

delays in particular 
hardware 

General Purpose/Best Effort 
•  ISA fixed 
•  Want to run same 

assembly on different 
implementations 

•  Tolerate different delays 
for different hardware 

•  Run faster on newer, 
larger implementations 
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SoC Opportunity 

•  Can choose which resources are 
shared 

•  Can dedicate resources to tasks 
•  Isolate real-time tasks/portions of tasks 

from best-effort 
– Separate hardware/processors 
– Separate memories, network 

Penn ESE532 Fall 2018 -- DeHon 50 

Penn ESE532 Fall 2018 -- DeHon 51 

Big Ideas: 
•  Real-Time applications demand 

different discipline from best-effort tasks 
•  Look more like synchronous circuits and 

hardware discipline 
•  Avoid or use care with variable delay 

programming constructs 
•  Can sequentialize, like processor 

– But must avoid/rethink typical processor 
common-case optimizations 

– Offline calculate static schedule for 
computation and sharing 
•  Instead of dynamic arbitration, interlocks Penn ESE532 Fall 2018 -- DeHon 52 

Admin 
•  Wednesday/Day 10 reading on Canvas 

+ Zynq Book 
•  We are here Wednesday 

– Do have office hours Monday, Tuesday 
•  Fall Break – Thursday and Friday 

– No Office Hours Thursday (10/4) 
– No HW due this Friday (10/5) 

•  HW5 due 10/12 
– Will involve some long Vivado HLS/SDSoC 

tool times 


