
ESE532 Fall 2019

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2019 HW3: Thread Parallel Wednesday, September 11

Due: Friday, September 20, 5:00pm

In this assignment, we will map the application from homework 2 on the ARM Cortex A53
cores of the Ultra96 platform. We will explore different parallel implementations and analyze
their impact on performance.

Collaboration

You can find the partner assignment on Canvas in the Partners map under the Files section.
In the event that the partner assignment does not work out, contact the instructor or TA
as soon as possible. Partners may share code and results and discuss analysis, but each
writeup should be prepared independently. Outside the assigned groups, only sharing of tool
knowledge is allowed. See the course policies on the course web page http://www.seas.

upenn.edu/~ese532 for full details of our policies for this course.

Communication

We will divide the work into threads that run on different processors. To distribute and coor-
dinate the work, the processors must communicate. We will let the processors communicate
via the SDRAM. This is possible because the SDRAM is mapped into the address spaces of
both processors. In order to share data, the processors must agree on the location and or-
ganization of the data. In the provided code, we have mapped a small structure (com_area)
at a fixed address in memory, which we use for communicating pointers to shared memory
areas and synchronization. We must also make sure that both processors respect each other’s
private memory areas. We have already done that in the provided code by mapping private
code and data of both processors at different locations. Sharing SDRAM is complicated by
the fact that SDRAM is cached in L1 and L2 caches. Data that one processor attempts to
write to SDRAM may not have been written to SDRAM yet, but instead remain in the pri-
vate L1 cache of the processor. When another processor reads the same memory location, it
may observe an old value. Fortunately, our Zynq has a Snoop Control Unit, which bypasses
data directly between processors as needed to maintain a consistent view of the SDRAM.
Therefore, this is no concern.

Another problem that we face when we communicate via shared memory is that the reading
processor should not start reading the memory until the writing processor has completed

1

http://www.seas.upenn.edu/~ese532
http://www.seas.upenn.edu/~ese532


ESE532 Fall 2019

writing the data. In other words, we need a form of synchronization between the cores.
Design of synchronization functions is a rather complex subject, which is dealt with in other
courses such as CIS 501, so we will just provide a few functions for this purpose without
discussing their implementation:

• Initialize prepares a processor core for communication.

• Wait for start blocks processor core 1 until core 0 calls Start_core_1.

• Start core 1 stops a blocking Wait_for_start function on core 1.

• Wait for core 1 blocks processor core 0 until core 1 calls Return_to_core_0.

• Return to core 0 stops a blocking Wait_for_core_1 function on core 1.

These functions have known shortcomings, but they should be sufficient for this assignment.

Note that you may have to adapt Initialize and com_area if you want to communicate
more pointers between the processors. Other than that, you should not have to change these
functions.

Obtaining and Running the Code

In the previous homework, we dealt with a streaming application that compressed only one
picture. For this homework, we will use the same application, except that it will take a video
stream instead of a single picture. The input and golden data is available here. Extract it and
copy them into SD card. Download the project archive from here. Here’s a video showing
how to extract the code and setup the projects.

The parallel implementations, which start with Coarse and Pipeline, are split over two
projects. Each project has the suffix core_0 or core_1, which indicate on which ARM
core they will run. We have provided debug configurations as well. Synchronization in the
initialization function guarantees that core 1 does not start processing data before core 0
has finished initializing.

You may notice that there are several more projects, such as ultra96V2_wrapper_hw_platform_0
and Coarse_core_1_bsp. The reason is that we created the application for core 1 as an appli-
cation project because an SDSoC project does not allow us to adapt the memory layout of the
application. We have to change the memory layout to prevent code and data for core 1 from
overlapping with code and data for core 0. Every application needs a Board Support Package
(BSP), which provides low-level routines to access the hardware. An SDSoC project auto-
matically includes a BSP. For an application project, we have to create one manually. In ad-
dition, we need a platform description, which is in the ultra96V2_wrapper_hw_platform_0

project.

2

http://www.seas.upenn.edu/~ese532/fall2019/code/hw3_data.tar.gz
http://www.seas.upenn.edu/~ese532/fall2019/code/hw3_code.tar.gz
https://www.youtube.com/watch?v=a_zkuUR3wMg&feature=youtu.be
https://www.youtube.com/watch?v=a_zkuUR3wMg&feature=youtu.be


ESE532 Fall 2019

Figure 1: Projects in the Workspace

Homework Submission

Your writeup should follow http://www.seas.upenn.edu/~ese532/writeup_guidelines.

pdf. Your writeup should include your answers to the following questions:

1. Baseline Extract the project archive, and click File→Open Projects from File System..
Check all the project directories as Figure 1.

(a) Determine the throughput of Baseline in pictures per second. This is your base-
line. We use -O2 for the baseline, so you should keep using -O2 for the rest of the
homework. Ignore overhead such as loading and storing pictures for this and the
following questions. (1 line)

2. Coarse-grain parallelism We will parallelize the application by processing half of
each picture on core 0 and the other half on core 1, a form of coarse-grain, data-
level parallelism. There are two projects, Coarse_core_0 and Coarse_core_1 in the
provided workspace that form the starting point of your implementation. We have
parallelized Scale and some parts of Filter already for you. We use debug mode
to run the 2 cores in parallel. Select Run → Debug Configurations from the menu.
Configure Debugger Coarse core 0(Default) as Figure 2. In the Application tab, check
psu cortexa53 1, and choose the right ELF file for Core 1. Click apply and Debug.

3

http://www.seas.upenn.edu/~ese532/writeup_guidelines.pdf
http://www.seas.upenn.edu/~ese532/writeup_guidelines.pdf


ESE532 Fall 2019

Figure 2: Debugger Configurations for 2 Cores

(a) Can we parallelize all streaming functions in our application, i.e. Filter_horizontal,
Filter_vertical, Differentiate, and Compress in the same way as Scale?
Motivate your answer. Assume that we synchronize our cores between each
producer-consumer pair. (3 lines)

(b) What speedup do you expect from parallelizing the functions that you considered
parallelizable in the previous question? [Include an equation for the expected
parallel runtime and show the equation you use for computing the speedup as
well as your final, numeric result.] (3 lines)

(c) Complete the implementation by parallelizing the functions that you considered
parallelizable in the previous question. Provide the relevant sections of code in
your report.

(d) Measure the throughput of your parallel implementation. (1 line)

(e) Validate your results. Make sure that your parallel version produces the same
answers as the original serial version. Explain how you validated your results;
report any discrepancies in your final implementation. (3–5 lines)

(f) Compare your measurement with your ideal, expected speedup. (1 line)

(g) If your speedup is different from ideal, expected, what effects are likely to be
responsible for the difference? (1-3 lines)

3. Pipelining As an alternative to coarse-grain, data-level parallelism, we will investigate
a pipelined implementation in this question. The initial implementation, which can
be found in the projects Pipeline_core_0 and Pipeline_core_1, maps Scale and

4



ESE532 Fall 2019

parts of Filter on core 1, and parts of Filter, Differentiate and Compress on
core 0. The provided stream has only 10 frames, but assume in your performance
computations that you are dealing with a stream of infinite length. You can run the 2
cores as the previous section.

(a) Report the throughput of the pipelined implementation in pictures per second.
(1 lines)

(b) What is the best performance that one could theoretically achieve with a pipelined
mapping of the streaming application?

(c) Describe the mapping that achieves the best performance.

(d) Reviewing the provided code, explain how it is able to deal with filling and drain-
ing the pipeline of operators? That is, when the application starts, there is only
data for the first stage in the pipeline (Scale) and no data for the later stages.
After the input data has been consumed by the Scale stage, the later stages will
still have data to process. How does the code assure the program runs correctly
to completion on all data? (4–6 lines)

(e) Review the provided code. Explain how you can adjust the PIPELINE PAR
parameter to maximize throughput. (2–3 lines)

(f) Adapt the implementation by changing the parameter PIPELINE PAR in Filter.c

to optimize the pipeline task or implement your own mapping to optimize the
pipeline tasks. Include the sections of the code that you modified in your report.

(g) Validate that your results. Report on how you validated and any disrepancies.
(1–3 lines)

(h) Report the throughput of your new application in pictures per second. (1–2 lines)

(i) Let’s investigate the performance if we incorporate the optimized pipeline in a
video broadcast server. The input data is read from an interface with 100 MB/s
throughput. 75% of traffic is video traffic that is compressed using our pipeline
(running on 2 processors). Assume the 2 cores can pipeline the process perfectly.
The remaining 25% is other traffic that we protect with an error correction code
(ECC) running on a dedicated hardware unit that adds 10% overhead in size.
The hardware ECC unit processes 30 MB/s. The output of the ECC unit and
compression pipeline are output to a single 2-Gigabit/s Ethernet port.

i. Draw a streaming dataflow diagram for the network server. Indicate through-
put and data transfer ratios where applicable.

ii. What is the maximum throughput that the server can achieve? (10 lines)

iii. Where is the bottleneck? (1 line)

iv. How much smaller do we have to make the kernel (FILTER LENGTH) of
Filter to move the bottleneck? (7 lines)

5



ESE532 Fall 2019

Figure 3: Debugger Configurations for 4 Cores

4. More Parallelism

Building on techniques and observations from previous parts, create a revised im-
plemetation that uses all four 64b ARM Cortex A53 cores to achieve additional speedup.
We have already offered you the 4-cores platform.1 We add the sync functions in each
core. However, we only move Scale into Core 2, move Filter horizontal into Core 1
and use Core 0 to run the rest of the tasks in pipeline style. Set the right ELF files for
each cores as shown in Figure 3. Try to achieve a 4× speedup over the single ARM
core solution.

(a) Describe your solution strategy (1 paragraph)

(b) Include your code in your report.

(c) Report speedup obtained and relate it to your solution. (3–5 lines)

(d) Validate your design and report on any disrepancies.

1In the future we will provide some notes on platform creation. For now, the platform we provide you
should be sufficient.

6


