
ESE532 Fall 2019

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2019 HW4: SIMD Wednesday, September 18

Due: Friday, September 27, 5:00pm

In this assignment, we will accelerate the streaming application from last homework using the
ARM NEON vector processor. Note that there were a few modifications to the application.
You can find the sources for this homework the course website along with a data set.

Collaboration

In this assignment, you work with partners that we assigned. You can find the assignment on
Canvas in the Partners map under the Files section. In the event that the partner assignment
does not work out, contact the instructor or TA as soon as possible. Partners may share
code and results and discuss analysis, but each writeup should be prepared independently.
Outside the assigned groups, only sharing of tool knowledge is allowed. See the course
policies on the course web page http://www.seas.upenn.edu/~ese532 for full details of
our policies for this course.

ARM NEON

Information about the NEON architecture and datatypes is available in the ARM assembler
user guide. Another section in the same guide lists the instructions. Note that not all
information may be applicable to the ARMv8 architecture of the Cortex A53 processor that
we are using. You are encouraged to locate other sources as needed and to share them.

Homework Submission

1. Teamwork

As the difficulty of homework is ramping up, we encourage you to spend a moment
planning on how to tackle the homework as a team.

(a) Describe which tasks of this homework you will perform, which tasks will be
performed by your teammate(s), and which tasks you will perform together (e.g.,
pair programming, where you both sit together at the same terminal). Motivate
your task distribution. (5 lines)

1

http://www.seas.upenn.edu/~ese532/fall2019/code/hw4_code.tar.gz
http://www.seas.upenn.edu/~ese532/fall2019/code/hw4_data.tar.gz
http://www.seas.upenn.edu/~ese532
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473m/dom1359731184627.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473m/dom1359731184627.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473m/dom1361289932816.html

ESE532 Fall 2019

Figure 1: Import projects into SDx

(b) Give an estimate of the duration of each of the tasks. (5 lines)

(c) Record the actual time spent on tasks as you work through the assignment.

(d) Explain how you will make sure that the lessons and knowledge gained from the
exercises are shared with everybody in the team. (3 lines)

2. Compiler Optimizations

Before we dive into the vector optimizations, we will investigate the effects of different
levels of compiler optimizations. Import the project by clicking File→Open project
from file systems. Choose the right directory for the imported project like Figure 1.
In case the build output disappears (because it did to me) you can find your build
output by going to: Project→Properties→C/C++ Build→Logging and then open the
file it points to.

(a) Measure the latency and size of the Baseline project at the different optimization
levels. As we create the project in SDK, you need to run and debug the Baseline
project in a different way. Click Run → Run Configurations. Choose Debugger
Baseline (Default). Specify the elf file in Application tab as Figure 2 and configure
Target Setup as Figure 3. Click Run. Put your measurements in a table like
Table 1. You can change the optimization level as follows: Right-click on the
project in the Project Explorer, and select C/C++ Build Settings from the popup
menu. In the Settings tab, go to ARM v8 gcc compiler→ Optimization, and select

2

ESE532 Fall 2019

Figure 2: Debugger Application Configurations for Baseline

Figure 3: Debugger Target Setup Configurations for Baseline

3

ESE532 Fall 2019

Optimization level Latency (ms) Code size (bytes)

-O0

-O1

-O2

-O3

-Os

Table 1: Latency and Code Size per Optimization Level

one of the optimization levels under Optimization Level. You can see the code
size by opening the CDT Global Build Console. The code size is in the column
text.

(b) Include the assembly code of inner loop of Filter_horizontal at optimization
level -O0 in your report. Click Run→ Debug Configurations. Choose Debugger
Baseline (Default). Specify the elf file in Application tab and configure Target
Setup as Figure 3. Click Debug to enter the debug mode.

(c) Include the assembly code of inner loop of Filter_horizontal at optimization
level -O2 in your report.

(d) Based on the machine code of questions 2b and 2c, explain the most important
difference between the -O0 and -O2 versions. (2 lines)
Hints (leading questions):

• for each case (-O0, -O2), how many times does the loop read the variable i?

• for each case (-O0, -O2), how many times does the loop read and write the
variable Sum?

• why is the -O2 loop able to avoid recalculating Y*INPUT WIDTH+X inside the
loop body?

• what else is the -O2 loop able to avoid reading from memory? recaculating?

• how is the -O2 loop able to perform fewer operations?

(e) Why would you want to use optimization level -O0?
Hint: Compile the code with -O3 and track the values of the variables X, Y, and
i as you step through Filter_horizontal. (3 lines)

(f) Include the assembly code of inner loop of Filter_horizontal at optimization
level -O3 in your report.

(g) Based on the machine code of questions 2c and 2f, explain the most important
difference between the -O2 and -O3 versions. (1 line)

(h) What are two drawbacks of using a higher optimization level? (5 lines)

4

ESE532 Fall 2019

3. Automatic Vectorization

The easiest way to take advantage of vector instructions is by using the automatic
vectorization feature of the GCC compiler, which automatically generates NEON in-
structions from loops. We will tell you how to change the compilation flag to enable
the vectorization in this part. Automatic vectorization in GCC is sparsely documented
in the GCC documentation. Although we are not using the ARM compiler, the ARM
compiler user guide may give some more insight.

(a) Report the latency of each stage of the baseline application at -O3. (Start a table
that includes each stage and an overall application latency; we will continue to
expand this table throughout this problem.)

(b) Based on your understanding of the C code, which loops in the streaming stages of
the application have sufficient data parallelism for vectorization? Motivate your
answer. (Add a column to the table you started in Q 3a for marking suitability;
add explanation in 2–5 lines after table.)

(c) Identify the critical path lower bound for Filter_vertical in terms of compute
operations. Focus on the data path. Ignore control flow and offset computations.
(5 lines)
Hint: Consider only the dependencies in the computation. What happens if you
unroll the loops completely?

(d) Report the resource capacity lower bound for Filter_vertical. Focus on the
computation; you may ignore control flow and addressing computations. There
are many resources that may limit the performance. (5 lines)
Hint: As with any resource capacity lower bound analysis, you may have multiple
resources and may need to consider them each to identify the one that is most
constraining.
Hint: you will need to review the NEON architecture (which we discuss in class)
and reason about what resources is has available to be used on each cycle.

(e) What speedup do you expect your application can achieve under ideal circum-
stances? (5 lines)
Hint: remember Amdahl’s Law; think about critical path lower bounds and re-
source capacity lower bounds.

(Add another column to the table you started in Q 3a showing expected per-
formance after ideal vectorization; separately show Amdahl’s Law calculation for
overall speedup.)

(f) We will enable the vectorization in gcc. Right click the project, choose
Properties→C/C++Build→Settings→ARM v8 gcc compiler→Miscellaneous, in
“Other flags” change “nosimd” to “simd”, and build the project again. Report
the program size.

(g) Report the speedup of the vectorized code with respect to the baseline. (Add
two more columns to the table you started in Q 3a showing per stage and overall
latency (first column) and speedup relative to non-vectorized baseline (second
column)).

5

https://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472m/chr1359124204202.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472m/chr1359124204202.html

ESE532 Fall 2019

(h) Explain the discrepancy between your measured and ideal performance based on
the optimization of Filter_horizontal. (3 lines)
Hint: look at the size of the multiplications in the disassembly. if the disassembly
window cannot show the compelet assembly code (like .word 0x2e20c2a1), you can
open the elf file. In Project Explorer, double click Baseline→ Binaries→Baseline.elf.
You can use line number as clues.

Hint: to read this code, you probably need to understand the relation between Q
and V registers. Perhaps useful:

• http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0002a/

ch01s03s02.html

• https://developer.arm.com/docs/den0024/latest/armv8-registers/neon-and-floating-point-registers/

scalar-register-sizes

• https://developer.arm.com/docs/den0024/latest/armv8-registers/neon-and-floating-point-registers/

vector-register-sizes

(i) Show how you can resolve the issue that you identified in the previous problem.
(1 line)

(j) Report the speedup with respect to the baseline after resolving the issue in both
Filter_horizontal and Filter_vertical. (Add two more columns to the table
you started in Q 3a showing per stage and overall speedup after resolving.)

6

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0002a/ch01s03s02.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0002a/ch01s03s02.html
https://developer.arm.com/docs/den0024/latest/armv8-registers/neon-and-floating-point-registers/scalar-register-sizes
https://developer.arm.com/docs/den0024/latest/armv8-registers/neon-and-floating-point-registers/scalar-register-sizes
https://developer.arm.com/docs/den0024/latest/armv8-registers/neon-and-floating-point-registers/vector-register-sizes
https://developer.arm.com/docs/den0024/latest/armv8-registers/neon-and-floating-point-registers/vector-register-sizes

ESE532 Fall 2019

4. Reflection

Reflect on the cooperation in your team.

• Compare your actual time on tasks with your original estimates. (table with 1-2
line explanation of major disrepancies)

• Reflect on your task decomposition (Q 1a). Were you able to complete the task
as you originally planned? What aspects of your original task distribution worked
well and why? Did you refine the plan during the assignment? How and why? In
hindsight, how should you have distributed the tasks? (paragraph)

• What was the most useful thing you learned from or working with your teammate?
(2–4 lines)

• What do you believe was the most useful thing that you were able to contribute
to your team? (1–3 lines)

7

