
ESE532 Fall 2019

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2019 Midterm Wednesday, October 9

• Exam ends at 11:50am; begin as instructed (target 10:30am)
Do not open exam until instructed.

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1 2a 2b 3 4 5 6 7 8 Total

10 5 5 10 10 10 10 20 20 100

1

ESE532 Fall 2019

Consider the following code to pick a set of nearest-neighbor assignments (e.g., Ride Share
Drivers to Passengers or Fire Trucks to Fires).

code_assign.c Wed Oct 09 20:33:13 2019 1

void assign() {

 // these are all in the main memory

 uint32_t driver_x[AVAILABLE];

 uint32_t driver_y[AVAILABLE];

 uint16_t passenger_x[TARGETS];

 uint16_t passenger_y[TARGETS];

 uint64_t distances[TARGETS][AVAILABLE];

 uint16_t matches[TARGETS][TARGETS];

 uint16_t match[TARGETS];

 get_drivers(driver_x,driver_y); // in 10*AVAILABLE cycles all memory

 get_passengers(passenger_x,passenger_y); // in 10*TARGETS cycles all memory

 compute_distances(driver_x,driver_y,passenger_x,passenger_y,distances);

 best_matches(distances,matches);

 assign_matches(matches,match);

 //TYPO: send_assignments(match); // in 10*TARGET cycles all memory

 send_assignments(match); // in 10*TARGETS cycles all memory

 }

2

ESE532 Fall 2019

code_operators.c Wed Oct 09 20:37:09 2019 1

#define TARGETS 100

#define AVAILABLE 1000

uint64_t distance(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2) {

 int32_t dx=x1-x2;

 int32_t dy=y1-y2;

 return(dx*dx+dy*dy);

 }

void compute_distances(uint32_t driver_x[AVAILABLE],

 uint32_t driver_y[AVAILABLE],

 uint16_t passenger_x[TARGETS],

 uint16_t passenger_y[TARGETS],

 uint64_t distances[TARGETS][AVAILABLE]) {

 for (int p=0;p<TARGETS;p++) // loop A

 for (int d=0;d<AVAILABLE;d++) // loop B

 distances[p][d]=distance(driver_x[d],driver_y[d],

 passenger_x[p],passenger_y[p]);

 return;

 } // compute_distances

void best_matches(uint64_t distances[TARGETS][AVAILABLE],

 uint16_t matches[TARGETS][TARGETS]) {

 uint64_t p_distances[AVAILABLE]; // in scratchpad memory

 uint16_t p_matches[TARGETS]; // in scratchpad memory

 for (int p=0;p<TARGETS;p++) { // loop C

 for (int d=0;d<AVAILABLE;d++) // stream copy distances for p

 p_distances[d]=distances[p][d];

 closest_available(p_distances,p_matches);

 for (int m=0;m<TARGETS;m++) // stream copy matches for p

 matches[p][m]=p_matches[m];

 } // for p

 return;

} // best_matches

void closest_available(uint64_t distances[AVAILABLE],

 uint16_t matches[TARGETS]) {

 // the matches result is an ordered list (smallest to largest)

 // of the TARGETS nearest(smallest distance) available resources (drivers)

 // implementation omitted -- we will ask you to supply in Question 7.

 // for Question 1--5, assume

 // closest_available requires 4*TARGETS*AVAILABLE compute cycles

 // and 4*TARGETS*AVAILABLE memory cycles

 // critical path is TARGETS cycles (or, equivalently, ns)

}

void assign_matches(uint16_t matches[TARGETS][TARGETS], uint16_t match[TARGETS])

{

 // ERROR in exam: uint16_t driver_match[DRIVERS]; // in scratchpad memory

 uint16_t driver_match[AVAILABLE]; // in scratchpad memory

 for (int d=0;d<AVAILABLE;d++) driver_match[d]=0; // assume free

 for (int p=0;p<TARGETS;p++) // loop F

 for (int m=0;m<TARGETS;m++) // loop G

 if (driver_match[matches[p][m]]==0) {

 match[p]=matches[p][m];

 driver_match[matches[p][m]]=p;

 break; // out of the for m loop

 } // if driver available

 return;

}

3

ESE532 Fall 2019

We start with a baseline, single processor system as shown.

64KB

P

local
scratchpad
memory

1
0

G
B

/s
8MB
Memory

• For simplicity throughout, we will treat non-memory indexing adds (subtracts count
as adds), compares, and multplies as the only compute operations. We’ll assume the
other operations take negligible time or can be run in parallel (ILP) with the adds,
multiplies, and memory operations. (Some consequences: You may ignore loop and
conditional overheads in processor runtime estimates; you may ignore computations in
array indecies.)
• Baseline processor can execute one multiply, compare, or add per cycle and runs at

1 GHz.
• Data can be transfered from the 8MB main memory at 10 GB/s when streamed in

chunks of at least 192B. Assume for loops that only copy data can be auto converted
into streaming operations.
• Non-streamed access to the main memory takes 10 cycles.
• Baseline processor has a local scratchpad memory that holds 64KB of data. Data can

be streamed into the local scratchpad memory at 10 GB/s. Non-streamed accesses to
the local scratchpad memory take 1 cycle.
• By default, all arrays live in the main memory.
• Arrays p distances, p matches, and driver match live in local scratchpad memory.
• Assume scalar (non-array) variables can live in registers.
• Assume all additions are associative.
• Assume comparisons, adds, and multiplies take 1 ns when implemented in hardware

accelerator, so fully pipelined accelerators also run at 1 GHz. A compare-mux operation
can also be implemented in 1 ns.
• Data can be transfered to accelerator local memory at the same 10 GB/s when streamed

in chunks of at least 256B.

4

ESE532 Fall 2019

1. Simple, Single Processor Resource Bounds

Give the single processor resource bound time for each function.

function Compute Memory

compute distances 5× 105 5× 106

best matches 4× 107 4.0082× 107+

assign matches 104 2.2× 105

assign 4.1× 107 4.5× 107

compute distances compute: TARGETS*AVAILABLE*5

compute distances memory: TARGETS*AVAILABLE*5*10

best matches compute: TARGETS*4*TARGETS*AVAILABLE

best matches memory: TARGETS(AVAILABLE*(8/10) + 4*TAR-
GETS*AVAILABLE + TARGETS*(2/10))
(8/10) and (2/10) terms are for streaming transfers before and
after closest available calls
assign matches compute: TARGETS*TARGETS*1

assign matches memory: TARGETS*TARGETS*(2+2*10)
first 2 is readers to driver match; second is to match and matches
assuming only read matches[p][m] once from memory and use 3
times. Otherwise second 2 will be 4.
rest of assign is 10*AVAILABLE+20*TARGETS for 1.2× 104

5

ESE532 Fall 2019

2. Based on the simple, single processor mapping from Problem 1:

(a) What function is the bottleneck? (circle one)

compute distances
(best matches)
assign matches

(b) What is the Amdahl’s Law speedup if you only accelerate the identified function?

(8.6× 107)/(5.7× 106) = 15

6

ESE532 Fall 2019

3. Parallelism in Loops

(a) Classify the following loops as data parallel or not? (loop bodies could be executed
concurrently)

(b) Explain why or why not?

Data

Loop Parallel? Why or why not?

A Y
all drivers, targets independent

B Y
all drivers, targets independent

C Y
each target closest available independent

F N
availability of closest drivers impacted by

previous selections; must resolve previous

selection before can process target p

G N
each choice depends on previous availabil-

ity check; must check each in turn to make

selection. We could do parallel-prefix se-

lection to do this in log-time, but that’s

beyond what we’ve discussed in class.

7

ESE532 Fall 2019

4. Identify streaming opportunties between functions. When streaming is possible, what
granularity of data can be usefully sent between the functions? [i.e., producer can
generate and consumer can operate upon without waiting for additional data from the
producer.] Report as a size in bytes and the logical data structure (or part of a data
structure) to which this corresponds.

(a) compute distances → best matches

8*AVAILABLE=8000 Bytes for rows of distance.
While compute distances can produce each distance inde-
pendently, best matches needs an entire row for a particu-
lar passenger to stream to closest match. Each closest match
call is independent, so can operate concurrent with compute distances
computing the next row.

(b) best matches → assign matches

2*TARGETS=200 Bytes for rows of matches.
best matches is producing each passenger match row in-
depdently and streaming them as a group into memory. As
each match row is available, assign matches can process it
and identify a match. Since matches are assigned in the same
order as produced by best matches, assign matches, we
can process a passenger assignment while best matches is
producing the ordered matches for the next driver.

8

ESE532 Fall 2019

5. What is the critical path for the entire computation as captured in the assign function?

compute distances: 3 (subracts, multiplies, add)

best matches: closest available= TARGETS
assign matches: TARGETS2

Total critical path: 10,103

Depending on why the times for get drivers, get passengers, send assignments
are what they are, we could include get drivers, get passengers,
send assignments for another
10*(AVAILABLE+2*TARGETS)=10,200. Omitting them as-
sumes they are memory bottlenecks that could be avoided with
appropriate engineering.

assign matches using parallel-prefix could be TARGETS ∗ (1 +
log2(TARGETS)) = 800, making total around 903

9

ESE532 Fall 2019

6. Rewrite the body of compute distances to minimize the memory resource bound by
exploiting the scratchpad memory.

• Annotate what arrays live in the local scratchpad

• Account for total memory usage in the local scratchpad

• use for loops that only copy data to denote the streaming operations

Estimate the new memory resource bound for your optimized compute distances.

Code on facing page.
Uses 16,400 B of scratchpad memory.

Memory Resource Bound: 4000/10 + 4000/10 + 200/10 + 200/10
+100*1000*5+100*(8000/10)=580840=5.8× 105

10

ESE532 Fall 2019

(This page intentionally left mostly blank for answers.)

void compute_distances(uint32_t driver_x[AVAILABLE],

uint32_t driver_y[AVAILABLE],

uint16_t passenger_x[TARGETS],

uint16_t passenger_y[TARGETS],

uint64_t distances[TARGETS][AVAILABLE]) {

uint32_t local_driver_x[AVAILABLE]; // scratchpad 4000 B

uint32_t local_driver_y[AVAILABLE]; // scratchpad 4000 B

uint16_t local_passenger_x[TARGETS]; // scratchpad 200 B

uint16_t local_passenger_y[TARGETS]; // scratchpad 200 B

uint64_t p_distances[AVAILABLE]; // scratchpad 8000 B

// streaming read into locals

for (int d=0;d<AVAILABLE;d++) local_driver_x[d]=driver_x[d];

for (int d=0;d<AVAILABLE;d++) local_driver_y[d]=driver_y[d];

for (int p=0;p<TARGETS;p++) local_passenger_x[p]=passenger_x[p];

for (int p=0;p<TARGETS;p++) local_passenger_y[p]=passenger_y[p];

for (int p=0;p<TARGETS;p++) { // loop A

for (int d=0;d<AVAILABLE;d++) // loop B

p_distances[d]=distance(local_driver_x[d],local_driver_y[d],

local_passenger_x[p],local_passenger_y[p]);

// streaming write of distances row

for (int d=0;d<AVAILABLE;d++) distances[p][d]=p_distances[d];

}

return;

} // compute_distances

11

ESE532 Fall 2019

7. Consider a substrate with 4 simple processors (1 GHz as previously outlined), 1 fast
processor (3 GHz, with everything running 3× as fast except data transfer from main
memory), and 2 accelerators. The accelerators are pipelined and designed to start one
call to closest available each cycle;1 pipeline depth is TARGETS. (You wlll look at
the accelerator in Problem 8, but do not need to know its internal details to solve this
problem). Describe how you would map the computation onto these heterogeneous
computing resources. Describe how you would use the scratchpad memories as neces-
sary beyond what you’ve already answered in Problem 6. Estimate the performance
your mapping achieves.

64KB

P

local
scratchpad
memory

1
0
G

B
/s

8MB
Memory

64KB

P

64KB

P

64KB

P

64KB

Fast PAccel

Accel

Accelerators perform best match in 100 cycles plus 100 cycles to drain pipeline. Place
on two and this runs in 50+100=150 cycles. All but final call to closest available
overlapped with compute distances.

Consistent with Problem 8, accelerators run in 100,000 cycles. With 2, it takes 50,000
cycles. Only non-overlapped call takes 1000+100 cycles.

Use 3 simple processors and fast processor for compute distances. With Problem 6,
compute distance total is (5 + 5.8) × 105 cycles. Divided by 6 for 3 simple + one 3×
processors, 10.8/6=1.8× 105 cycles.

Use 1 slow processor for everything else.

Use streaming to optimize memory references in assign matches. Create local for match
and a p matches for one row of matches at a time. Stream in matches[p] into a
local p matches inside each F loop body. Stream out match at end. Memory in
assign matches (assuming read once from local version of matches[p][m] and use 3
times) goes to 100*(200/10)+4*100*100+200/10=4.2 × 104, bringing assign matches
to a total time of 4.2 × 104. Since 4.2 × 104 is less than the time on accelerators or
compute distances processors, this isn’t the bottleneck. Streaming overlap means only
the final 200/10+(4+1)*100+200/10 cycles for completing assign matches adds time.

So, total time is 12,000 for get drivers, get passengers, and send assignments, 1.8×105

for the compute distances, and a final 540 cycles for the end of assign matches.

1Error: to be consistent, should be every AVAILABLE cycles.

12

ESE532 Fall 2019

(This page intentionally left mostly blank for answers.)

compute distances 3 simple + 1 fast 1.8× 105

best match 2 accelerators adds 100 (as stated)
adds 1100 (Problem 8)

everything else 1 slow adds 12,540

Estimate total processing time as 1.8× 105 cycles.
Same estimate if use consistent Problem 8 time for accelerators.

13

ESE532 Fall 2019

8. Consider the following accelerator for closest available that processes one distance
per cycle:

<

small[i] large[i] small_index[i] large_index[i]

large[i−1]
large_index[i−1]

Order Unit

O
rd

e
r

U
n

it

O
rd

e
r

U
n

it

O
rd

e
r

U
n

it

O
rd

e
r

U
n

it

0 1 TARGETS−12

distances[]

1

d

(Hint: this is performing an insertion sort one distance at a time, but keeping only the
smallest TARGETS values.)

Assume:

• distances[] can be streamed from main memory into the local memory shown (with
code already shown in best matches)

• large[i] and small[i] can be reset to a maximum value, MAX VALUE, in one cycle in
hardware at the beginning of a call to closest available; code for this reset in
the C version is provided.

• small index[i] and large index[i] can be reset to a designated empty value, EMPTY VALUE,
in one cycle in hardware; code for this reset in the C version is provided.

• small index[] becomes matches[] when the computation is completed and can be
streamed into main memory (with code already shown in best matches)

(a) Write C code that is consistent with the accelerator.

(b) Annotate the C code to explain how the C code was realized in the accelerator.
(As appropriate, explain how unrolling, array partitioning, pipelining, dataflow
streaming, and/or inlining were applied to the C code to get the implementation
show.)

14

ESE532 Fall 2019

void closest_available(uint64_t distances[AVAILABLE],

uint16_t matches[TARGETS]) {

uint16_t small_index[TARGETS]; // array partition complete

uint16_t large_index[TARGETS]; // array partition complete

uint 64_t small[TARGETS]; // array partition complete

uint 64_t large[TARGETS]; // array partition complete

for (int i=0;i<TARGETS;i++) small[i]=MAX_VALUE;

for (int i=0;i<TARGETS;i++) small_index[i]=EMPTY_VALUE;

for (int i=0;i<TARGETS;i++) large[i]=MAX_VALUE;

for (int i=0;i<TARGETS;i++) large_index[i]=EMPTY_VALUE;

for (int d=0;d<AVAILBLE;d++) { // pipeline

if (distances[d]<small[0]) {

large[0]=small[0];

small[0]=distances[d];

large_index[0]=small_index[0];

small_index[0]=d;

}

else{

small[0]=small[0];

large[0]=distances[d];

small_index[0]=small_index[0];

large_index[0]=d;

}

for (int i=1;i<TARGETS;i++) { // unroll complete, pipeline

if (large[i-1]<small[i]){

large[i]=small[i];

small[i]=large[i-1];

large_index[i]=small_index[i];

small_index[i]=large_index[i-1];

}

else {

small[i]=small[i];

large[i]=large[i-1];

small_index[i]=small_index[i];

large_index[i]=large_index[i-1];

}

} // i

} // d

15

ESE532 Fall 2019

for (int i=0;i<TARGETS;i++) matches[i]=small_index[i];

return;

}

16

ESE532 Fall 2019

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a students performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another persons paper, article, or computer work and
submitting it for an assignment, cloning someone elses ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a students
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on ones resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another students efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for ones own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that students responsibility to consult with the instructor to clarify any
ambiguities.

17

