
1

Penn ESE532 Fall 2019 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 14: October 16, 2019
Real Time

Penn ESE532 Fall 2019 -- DeHon 2

Today
Real Time
• Demands
• Challenges

– Algorithms
– Architecture

• Disciplines to achieve

Message
• Real-Time applications demand

different discipline from best-effort tasks
• Look more like synchronous circuits
• Can sequentialize, like processor

– But must avoid/rethink typical general-
purpose processor common-case
optimizations

Penn ESE532 Fall 2019 -- DeHon 3

Real Time

• “Real” – refers to physical time
– Connection to Real or Physical World

• Contrast with “virtual” or “variable” time
• Handles events with absolute

guarantees on timing

Penn ESE532 Fall 2019 -- DeHon 4

Real-Time Tasks
• What timing guarantees might you like

for the following tasks?
– Turn steering wheel on a drive-by-wire car

• Delay to recognized and car turns
– Self-driving car detects an object in its path

• Delay from object appearing to detection
– Pacemaker stimulates your heart
– Video playback (frame to frame delay)

Penn ESE532 Fall 2019 -- DeHon 5

Real-Time Guarantees

• Attention/processing within fixed interval
– Sample new value every XX ms
– Produce new frame every 30 ms
– Both: schedule to act and complete action

• Bounded response time
– Respond to keypress within 20 ms
– Detect object within 100 ms
– Return search results within 200 ms

Penn ESE532 Fall 2019 -- DeHon 6

2

Computer Response

• What do these things indicate?
– When will the computer complete the task?

Penn ESE532 Fall 2019 -- DeHon 7

https://en.wikipedia.org/wiki/File:WaitCursor-300p.gif
https://en.wikipedia.org/wiki/File:Windows_8_%2B_10_wait_cursor.gif

Real-Time Reponse

• What if your car gave you a spinning
wait wheel for 5 seconds when you
– Turned the wheel?
– Stepped on the brakes?

Penn ESE532 Fall 2019 -- DeHon 8

Synchronous Circuit Model
• A simple synchronous circuit is a good

“model” for real-time task
– Run at fixed clock rate
– Take input every “cycle”
– Produce output every “cycle”
– Complete computation between input and

output
– Designed to run at fixed-frequency

• Critical path meets frequency requirement
Penn ESE532 Fall 2019 -- DeHon 9

Preclass 2
• Assume clocked at 100Hz
• Worst-case delay from (L)eft press to

change in heading?
• Cycle rate could operate?

Penn ESE532 Fall 2019 -- DeHon 10

Historically

• Real-Time concerns grew up in EE
– Because an analog circuit was the only

way could meet frequency demands
– …later a dedicated digital circuit…

• Applications
– Signal processing, video, control, …

Penn ESE532 Fall 2019 -- DeHon 11

Technological Change

• Why not be satisfied with this answer
today?
– That is, for real-time task need dedicated

synchronous circuit?
– Hint: What does preclass 2c suggest?

Penn ESE532 Fall 2019 -- DeHon 12

3

Performance Scaling
• As circuit speeds increased

– Can meet real-time performance demands
with heavy sequentialization

• Circuit and processor clocks
– from MHz to GHz

• Many real-time task rates unchanged
– 44KHz audio, 33 frames/second video

• Even 100MHz processor
– Can implement audio in a small fraction of

its computational throughput capacity
Penn ESE532 Fall 2019 -- DeHon 13

HW/SW Co-Design

• Computer Engineers – know can
implement anything as hardware or
software

• Want freedom to move between
hardware and software to meet
requirements
– Performance, costs, energy

Penn ESE532 Fall 2019 -- DeHon 14

Real-Time Challenge

• Meet real-time demands / guarantees
– Economically using programmable

architectures
• Sequentialize and share resources with

deterministic, guaranteed timing

Penn ESE532 Fall 2019 -- DeHon 15

Processor Data Caches
• Traditional Processor Data Caches are

a heuristic instance of this
– Add a small memory local to the processor

• It is fast, low latency
– Store anything fetched from large/remote

memory in local memory
• Hoping for reuse in near future

– On every fetch, check local memory before
go to large memory

Penn ESE532 Fall 2019 -- DeHon 16

Day 3

Processor Data Caches
• Demands more than a small memory

– Need to sparsely store address/data
mappings from large memory

– Makes more area/delay/energy expensive
than just a simple memory of capacity

• Don’t need explicit data movement
• Cannot control when data moved/saved

– Bad for determinism
• Limited ability to control what stays in

small memory simultaneously
Penn ESE532 Fall 2019 -- DeHon 17

Day 3
Processor Data Caches

• Traditional Processor Data Caches are
a heuristic instance of this
– Store anything fetched from large/remote

memory in local memory
• Hoping for reuse in near future

– On every fetch, check local memory before
go to large memory

– Stall processor while waiting for data

Penn ESE532 Fall 2019 -- DeHon 18

4

Preclass 3:
Processor Cache Timing

• Assume
– cache miss (go to large memory) takes 10

cycles
– Cache hit (small memory) takes 1
– Start with empty cache

• Due to memory delay, how long to execute:

Penn ESE532 Fall 2019 -- DeHon 19

b=a[0]+a[1];
c=a[1]+a[2];
d=a[2]+a[0];

b=a[i]+a[j];
c=a[k]+a[l];
d=a[m]+a[n];

Observe

• Instructions on “General Purpose”
processors take variable number of
cycles

Penn ESE532 Fall 2019 -- DeHon 20

Preclass 4

• How many cycles?
– sin, cos 100 cycles each
– Assignments take 1 cycle

Penn ESE532 Fall 2019 -- DeHon 21

old_sh=sh; old_ch=ch;
if (!left || !right)

{sh=old_sh;ch=old_ch;}
else

{sh=sin(heading);
ch=cos(heading);}

Preclass 5

• How many cycles?

Penn ESE532 Fall 2019 -- DeHon 22

Preclass 5

• How many cycles?

Penn ESE532 Fall 2019 -- DeHon 23

Observe

• Data-dependent branching, looping
– Means variable time for operations

Penn ESE532 Fall 2019 -- DeHon 24

5

Two Challenges
1. Architecture – Hardware have variable

(data-dependent) delay
– Esp. for General-Purpose processors

• Instructions take different number of cycles

2. Algorithm – computational specification
have variable (data-dependent)
operations
– Different number of instructions

Penn ESE532 Fall 2019 -- DeHon 25

Algorithm

• What programming constructs are data-
dependent (variable delay)?

Penn ESE532 Fall 2019 -- DeHon 26

Programming Constructs
• Conditionals: if/then/else
• Loops without compile-time determined

bounds
– While with termination expressions
– For with data-dependent bounds

• Data-dependent recursion
• Interrupts

– I/O events, time-slice
• Note: 1st three were issue for HLS

– For same reason – how did we address?
Penn ESE532 Fall 2019 -- DeHon 27

Architecture

• What processor constructs are variable
delay?

Penn ESE532 Fall 2019 -- DeHon 29

Processor Variable Delay
• Caches
• Dynamic arbitration for shared

resources
– Bus, I/O, Crossbar output, memory, …

• Data hazards
• Data-dependent branching / branch

delays
• Speculative issue

– Out-of-Order, branch prediction
Penn ESE532 Fall 2019 -- DeHon 30

Hardware Architecture

• Some typical (371, 501) processor
“optimizations” can cause variable delay
– Caches
– Common-case optimizations
– Pipeline stalls

Penn ESE532 Fall 2019 -- DeHon 31

6

What can we do
to make architecture more

deterministic?
• Explicitly managed memory
• Eliminate Branching (too severe?)
• Unpipelined processors
• Fixed-delay pipelines

– Offline-scheduled resource sharing
– Multi-threaded

• Deadlines
Penn ESE532 Fall 2019 -- DeHon 32

Explicitly Managed Memory
• Make memory hierarchy visible

– Use Scratchpad memories instead of caches
• Explicitly move data between memories

– E.g. movement into local memory
• Already do for Register File in Processor

– Load/store between memory and RF slot
– …but don’t do for memory hierarchy

Penn ESE532 Fall 2019 -- DeHon 33

Explicitly Managed Memory

Penn ESE532 Fall 2019 -- DeHon 34

Offline Schedule Resource
Sharing

• Don’t arbitrate
• Decide up-front when each shared

resource can be used by each thread or
processor
– Simple fixed schedule
– Detailed Schedule

• What
– Memory bank, bus, I/O, network link, …

Penn ESE532 Fall 2019 -- DeHon 35

Time-Multiplexed Bus
Fixed by hardware master
• 4 masters share a bus
• Each master gets to

make a request on the
bus every 4th cycle
– If doesn’t use it, goes idle

Penn ESE532 Fall 2019 -- DeHon 36

Time-Multiplexed Bus
• Regular schedule
• Fixed bus slot schedule of length N >

masters
– (probably a multiple)

• Assign owner for each slot
– Can assign more slots to one

• E.g. N=8, for 4 masters
– Schedule (1 2 1 3 1 2 1 4)

Penn ESE532 Fall 2019 -- DeHon 37

7

Fully Scheduled

• At extreme, fully schedule which tasks
gets resource on each cycle

Penn ESE532 Fall 2019 -- DeHon 38

Simple Deterministic
Processor

Penn ESE532 Fall 2019 -- DeHon 39

• No branching
• Unpipelined
• Every operation

completes in fixed time

• Cycle time?

Simple Deterministic
Processor with Multiplier

Penn ESE532 Fall 2019 -- DeHon 40

• No branching
• Unpipelined
• Every operation

completes in fixed time

• Cycle time?

• What’s unfortunate
about this?

Simple Deterministic Processor
with some Pipelining

Penn ESE532 Fall 2019 -- DeHon 41

• No branching
• Every operation

completes in fixed time

• Retimed cycle time?
• How pipelines added

change behavior?
• Hint: what is sequence of

addresses into Instr.
Mem?

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

0

1

2

3

4 noop

Simple Deterministic
Pipelined Processor

Penn ESE532 Fall 2019 -- DeHon 42

• No branching
• Every operation

completes in fixed time

• How pipelines added
change behavior?
• Hint R1 value

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

0

1

noop

noop

noop

noop

Simple Deterministic
Pipelined Processor

Penn ESE532 Fall 2018 -- DeHon 43

• No branching
• Every operation

completes in fixed time

• Retimed cycle time?

+1

Instr.
Mem

Reg.
File

Data
Mem

ALU

1 ns

0.5ns

0.5ns

1ns 1ns

0.1ns

1ns

1ns

1ns

M1

M2

M3

0

1

noop

noop

noop

noop

8

Penn ESE532 Fall 2018 -- DeHon 44

Legal Register Moves

• Retiming Lag/Lead

Day 7

Reminder

• Able to pipeline and retime to reduce
cycle time on acyclic dataflow graphs

Penn ESE532 Fall 2018 -- DeHon 45

Day 8

Step 1: lead Mux

Penn ESE532 Fall 2018 -- DeHon 46

Step 2: lead M3

Penn ESE532 Fall 2018 -- DeHon 47

Step 3: lead M2

Penn ESE532 Fall 2018 -- DeHon 48

Step 4: lead M1

Penn ESE532 Fall 2018 -- DeHon 49

9

Step 5: Lead ALU

Penn ESE532 Fall 2018 -- DeHon 50

Step 6: Lead Data Mem

Penn ESE532 Fall 2018 -- DeHon 51

Step 7: Lag Instr. Mem

Penn ESE532 Fall 2018 -- DeHon 52

Step 8: Lead Mux

Penn ESE532 Fall 2018 -- DeHon 53

Step 9: Lead M3

Penn ESE532 Fall 2018 -- DeHon 54

Step 10: Lead M2

Penn ESE532 Fall 2018 -- DeHon 55

10

Step 11: Lead Mux

Penn ESE532 Fall 2018 -- DeHon 56

Step 12: Lead M3

Penn ESE532 Fall 2018 -- DeHon 57

Step 13: Lead Mux

Penn ESE532 Fall 2018 -- DeHon 58

Retimed

Penn ESE532 Fall 2018 -- DeHon 59

Max delay between
registers 1ns

Deadline Instruction
• Deal with algorithmic (branching) variability
• Set a hardware counter for thread
• Decrement counter on each cycle
• Demand counter reach 0 before thread

allowed to continue at deadline instruction
• Model: fixed rate of attention

– Stall if get there early
– Similar to flip-flop on a logic path

• Wait for clock edge to change or sample value

• Model: fixed execution time
Penn ESE532 Fall 2019 -- DeHon 60

WCET
• WCET – Worst-Case Execution Time
• Analysis when working with algorithms and

architectures with data-dependent delay
– Need to meet real time
– Calculate the worst-case runtime of a task

• Like calculating the critical path (but harder)
• Worst-case delay of instructions
• Worst-case path through code
• Worst-case # loop iterations

– Rationale for setting Deadlines
• (like a cycle time)Penn ESE532 Fall 2019 -- DeHon 61

11

Deterministic Pipelines
• Not how ARM, Intel (371, 501)

processor are piplined
• Those include operations that make

timing variable
– dynamic data hazards, branch speculation

• Here, data becomes available after a
predictable time

• Branches take effect at a fixed time
– Likely delayed

• Schedule to delays to get correct data
Penn ESE532 Fall 2019 -- DeHon 62

Different Goals

Real-Time
• Willing to recompile to

new hardware
• Want time on

hardware predictable
• Willing to schedule for

delays in particular
hardware

General Purpose/Best Effort
• ISA fixed
• Want to run same

assembly on different
implementations

• Tolerate different delays
for different hardware

• Run faster on newer,
larger implementations

Penn ESE532 Fall 2019 -- DeHon 63

SoC Opportunity

• Can choose which resources are
shared

• Can dedicate resources to tasks
• Isolate real-time tasks/portions of tasks

from best-effort
– Separate hardware/processors
– Separate memories, network

Penn ESE532 Fall 2019 -- DeHon 64

UltraScale+ Zynq
• Has 2x “Real-Time Processor”

– ARM Cortex-R5
• 32b (vs. 64b for A53 APU processor)
• ARMv7-R (vs. ARMv8)
• Single ALU, dual issue
• Branch prediction

• Explicitly managed scratchpads
• Tightly-Coupled Memories
• On-Chip Memory (OCM)

Penn ESE532 Fall 2019 -- DeHon 65

Programmable SoC

Penn ESE532 Fall 2019 -- DeHon 66

UG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

RPU Subsystem

Penn ESE532 Fall 2019 -- DeHon 67

UG1085
Xilinx
UltraScale
Zynq
TRM
(p65)

12

Multithreaded Processor

(Bonus, time permitting)

Penn ESE532 Fall 2019 -- DeHon 68

Multithreaded Processor

Penn ESE532 Fall 2019 -- DeHon 69

• No branching
• Every operation

completes in fixed time
• Retimed cycle time
• Each PC (color) is a

separate thread
• How interact?
• What does this act like?
• Compare unpipe?

Branching?

• Could add
branching

• Architecture
deterministic

• Need to reason
about variable
timing from
branching
– Use deadlinePenn ESE532 Fall 2019 -- DeHon 70

Multithreaded Pipeline
• Non-real-time threads

can share
• Timing of threads not

impact each other
• Non-real-time threads

take variable time
– Not interfere with real-

time thread slots

Penn ESE532 Fall 2019 -- DeHon 71

Penn ESE532 Fall 2019 -- DeHon 72

Big Ideas:
• Real-Time applications demand

different discipline from best-effort tasks

• Look more like synchronous circuits and
hardware discipline

• Avoid or use care with variable delay
programming constructs

• Can sequentialize, like processor
– But must avoid/rethink typical processor

common-case optimizations

– Offline calculate static schedule for
computation and sharing

• Instead of dynamic arbitration, interlocks
Penn ESE532 Fall 2019 -- DeHon 73

Admin
• HW6 due Friday

• Emulation tutorial
– Thursday 6pm – Yuanlong office hours

• HW7 out

