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Message

» Focus on interfaces early
— Integrate first
« Start with something simple that works
end-to-end and incrementally refine
— May lack features
— May perform poorly
—...but it lets you resolve interfaces early
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Standard Chip Aphorism

« Almost all ASICs work when first fabricated

— ...until you put them on the board.
» Then maybe 50%

* [usually say “first spin” — where each “spin”
is a separate manufacturing run]

Today

* Incremental Refinement
— Demand
— Benefits
— Simplifications
— Interfaces
— Defensive Programming
» Source Code Repositories
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Common Mistake

« Build pieces, then integrate at the end

» Spend most of available time on
components
— Then try to integrate for first time near
deadline
— Not enough time to integrate/debug at end
» Worst-case don’t have a working solution

» Spend more time fixing than if had identified
incompatibilities early
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Recommended Approach

» Decompose problem

» Focus on how components interact
 Figure out simplified functionality easy
to assemble

Get minimum functionality end-to-end
system running early

— Even if means cut corners, solve simplified
piece of problem

+ Chart path to refine pieces to goal
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Benefits
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Benefits: Overview

» Agree on interfaces up front

» Supports parallel development, testing,
debugging

» Confidence-boosting win of having
something that works

Digest problem -- supports work in small
bursts
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Interface First

» Agree on interfaces up front
» Each component knows interface

» Can replace each component
independently
» Simple baseline provides scaffolding
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Per

Parallel Development

» With interfaces defined...

» Each component can be (mostly)
independently developed and refined

» Simple baseline provides scaffolding

— Framework to test each component
independently as develop and refine

* Particularly important for team

—...helpful for individual, too
« Contains what need to think about at a time
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Confidence Boost

* Get to see it working

* Know you have something

— Just a question of how sophisticate can
you make it?
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Digested Problem

» Easier to concentrate on what need to
do for this piece

» Can make tangible process in short
bursts
—...time can find between lectures...
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Continuous Integration

Pieces always fit into interface scaffold
Add pieces, functionality as available
See improvement

Identify interface problems early
—...and refine them
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Rendering Example

* Create a 2D (video) image of a 3D
object (set of objects)

» For: computer-generated graphics
— Movies
—Video games
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Rendering Decomposed

N

* Pipeline of
— Projection
» Where do the points of
this triangle end up in the viewed image?
 Matrix-multiplication to translate points

., Focal
= Point ‘0

] "'f%‘?ﬁ P
A
T e

— Rasterization
e Turn into pixels Figure from:
. . . https://commons.wikimedia.org/
« Fill pIX6|S for trlangle wiki/File:Perspective_Projection
_ Z-buffer _Principle.jpg

 Keep only the ones on top (not hidden)
-2D image + Z-depth — keep smallest
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Example

Rendering
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Rendering

* Input:
— collection of triangles
 Each 3 (x,y,z) positions
— Viewpoint
* Another (x,y,z) point
* Output
— 2D raster image

» Showings what's visible
—Some things will be hidden behind others
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What's Hard (Preclass 1)

* What's hard about each part?
— Projection?
— Rasterization?
— Z-Buffering?
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Simplifications
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Simple Placeholder

* Identity function work?
— Pass input to output
* Get form right in simple way?
— E.g. compression
* Drop samples/images/pixels to get down?
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Simplified Projection Example

 Projection as identity function?
— Will definitely give wrong image
» Except when viewpoint 0,0,0....

— But the output of projection is triangles
* ...80 has right form for communication
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Simplification: Overview

Solve simpler problem
* Handle special subset of cases
— Avoid hard corner cases
» Don’t worry about performance
* Placeholder — stand in for real task
— Do minimal thing
— Use existing code
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Simplify (Preclass 3)

* How could we simplify
— Projection?
— Rasterization?
— Z-Buffering?
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Simplified Rasterization

* Maybe: Just put out pixels for triangle
corners?

— Definitely wrong
— Has right form
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Simplified Z-Buffer Example

* Intended
— Z-buffer
* Keep only the ones on top (not hidden)
—2D image + Z-depth — keep smallest
+ Simplified
— Just keep last value given
— If nothing overlaps - correct
» test with non-overlapping objects
— Even if overlap
* Looks wrong, but data has correct output form

Solve Subset

* Are there cases that are easier and
cases that are harder?
— Can arrange input/tests to only include
easier cases first
» Solve the simple cases first
— E.g. non-overlapping objects in Z-buffer
» Add support for harder cases later

nn ESE532 Fall 2019 -- DeHor

26

enn ESE532 Fall 2019 -- DeHor 27

Parallel Rendering Example

» Exploit data parallelism in rasterization
— Cut image into pieces
» Simplest: top half, bottom half
— Separate threads to rasterize each piece

Per

Parallel Rendering

* Maybe ideal: rasterization sends
triangle to appropriate rasterization
thread
—If in top half

+ send to top
—Else
» Send to bottom

* What could make hard?
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Pei

Parallel Rasterization

« Simple
— Triangles exclusively in one region
* One half
— Send to appropriate half
* Hard

— Triangle in multiple halves
+ Send to all (both)

» Or compute what goes in each and send triangles to
each
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Parallel Rasterization
Refinement

 Start simple

— Assume only in one half, and only send
there

— Use test cases split by halves

* Incrementally get more sophisticated
— Sometimes send to both

* Incrementally more
— Compute triangles for each region
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What makes hard?

» Can avoid that on initial pass?

— E.g. — avoid computing what part of
triangle is in each region

Penn ESE532 Fall 2019 -- DeHor

31

Non-Optimized Implementation

» Often complexity comes from optimized
implementation

— Start with simplest, non-optimized version as
placeholder
—-E.q.
* Brute force solution instead of clever algorithm
—Perhaps my most common mistake
* Large, inefficient data structure

—Instead of a more complicated, compact one
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Window Filter Day 13

+ Single read and write from dym, dy
« for (y=0;y<YMAX;y++)
for (x=0;x<XMAX;x++) {
dypxm=dypx; dypx=dnew; dnew=d[y+1][x+1];
dyxm=dyx; dyx=dyxp; dyxp=dy[x+1];
dymxm=dymx; dymx=dymxp; dymxp=dym[x+1];
o[y][x]=F(dymxm,dymx,dymxp,
dyxm,dyx,dyxp,
dypxm,dypx,dnew);
dym(x-1]=dyxm;dy[x-1]=dypxm; }
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Solve Small Instances?

« If challenge is scale (handling large
problems)

— Solve small problems first
— E.g. work on 64x64 image

« If trying to hit real time, easier with small image
» Small image may fit in BRAM (on-chip memory)
—Avoid complexities of data movement initally
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Day 13

Window Filter

» Compute based on neighbors
o for (y=0;y<YMAX;y++)
for (x=0;x<XMAX;x++)
olylIx]=F(d[y-1][x-1].dly-1][x].dly-1][x+1],
dlylix-11.dlylIx],dlyl[x+1],
dly+1]ix-1],dly+1][x],d[y+1][x+1]);
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Software First

» Functional placeholder in software first
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Leverage Existing Solutions

* Run some existing package, library to
get the right answer
—-E.g.
« call MATLAB to solve a matrix
* Invoke unix sort routine to get sorted data

* Invoke stand-alone image compressor or
renderer
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Interfaces
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Need to Know

* What information does each component
need to know?

* How do we get that information to each
component?
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What components depend upon?

Can a component output any data
(random data?) and be adequate to
exercise components interacts with?
— E.g. if feed into an integrator/accumulator
Need to output data of a given size?
» Output need to maintain some property?
— Sorted?
— Unique?
» Ok if doesn’t do its intended job well?
—E.g. intended to compress...
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Division of Task

* Who is expected to do what?
-E.gq,
» Which piece discards duplicates?
» Which piece removes/flags invalid input?
— E.g. Renderer

* Does Projection only send in-bound triangles to
each region rasterizer?

« Or does each region rasterizer need to deal
with out-of-bounds triangle coordinates?
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Rendering Interface
(Preclass 4)

* What need to communicate between
— Projection - Rasterization
— Rasterization > Z-Buffering
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3D Rendering: Need to Know

* Projection
— How many triangles
— Triangle points (x,y,z) triples
— Viewpoint x,y,z
+ Rasterization
— How many projected triangles (for region)
— Triangle points (x,y,z) triples
» Z-buffer
— (x,y,z,color) points
— How many (when done)?

How Communicate?

* Arrays

» Streams

« Shared memory locations?
» Variable lengths?

Penn ESE532 Fall 2019 -- DeHor

3D Rendering

 All naturally streaming
« All potentially variable
— Triangles depend on object complexity and
number of objects
— Projected depend on number in each
region
* Not know in advance

— Pixels sent depends on size of projected
triangles which changes with viewpoint
* Not know in advance
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3D Rendering

» Triangles and pixels unknown up front

* How might we communicate number of

triangles/pixels — communicate when
done?

enn ESE532 Fall 2019 -- DeHor

3D Rendering

» Triangles and pixels unknown up front
* How communicate?

— Send a record that means end-of-image?
« Extra bit?

—Send in blocks with maximum size
» Accompany each block with a length
* Length is a separate stream from data

enn ESE532 Fall 2019 -- DeHor

Properties components can
assume?

Sorted?

Non—duplicate?

All in-bound?

Bound on input size in a block?
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Interfaces May Change

* Interface first
— Means less surprise later
— Doesn’t mean know everything up front

» Experience making simple work ... and
refining simple

— Often best way to understand needs of
problem

» Refine the interfaces incrementally, too
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3D Rendering Independent
Refinement

* Projection — actually calculate projected
coordinates

» Rasterization — calculate pixels per
triangle

— Test just fine using identity from projection
» Z-buffer — add in Z-ordering
— Also testable with placeholder results
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Defensive Programming
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3D Rendering Start

* Might start
— Projection = identity
— Rasterization = triangle corners
— Z-buffer = save last

— Connect with streams
« Streams data has one bit for last triangle, pixel

» Can put together quickly
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3D Rendering Refinement

Put them back together and work with
interface defined

Could decide to change to
communicating with blocks

Could refine for parallel rasterization
—...and could do that in pieces
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Validate
Assumptions/Requirements

« If require a property on input of a module
— Good to have (optional) code to test for it
— [add that code second]
+ Adds code/complexity to check
— Condition it in #ifdef so can disable for
production, and re-enable for debug
— Good to catch invalid assumptions early
« ...rather than spend time debugging to discover
« Setup discussion about interface...which part got it

rong
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Swap Modules

* Make it easy to swap out
implementations

— Swap between placeholders and refined
implementations

— Swap among implementation versions

— Good to understand where problems
introduced
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Repository Message

» When working on a project, especially
with other people, want to use a source
code repository

Start one as soon as you create a
project team
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Source Code Repositories

git, svn
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Basic ldea

Central authoritative home for code
- Everyone can access

» Keeps track of all versions

— As iterate and refine

* Maybe keep track of multiple, in-use
versions at once 2 branches
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Penn

Basic Benefits
» Keep organized
— Common place for everything
» Keep track of history

— Can go back to previous versions
« If screw up; if thought worked before
« Lowers chance of accidentally deleting
« ...or losing when laptop disk crashes

» Able to work on independently
— Sharef/integrate as stable

» Branches
— Experiment without breaking main version

ESE532 Fall 2019

-- DeHor
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More Information

* Reading supplement now includes
— Git tutorials
» Which include pointers to where to pickup tools
— Git cheat sheet
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Integrate first

Big Ideas:

— Focus on interfaces early

Start simple

— Something that works end-to-end
Improve incrementally and iteratively
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Admin

 Project out and introduction Wednesday
* HW?7 due Friday
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