ESES532:
System-on-a-Chip Architecture

Day 15: October 21, 2019
Development by
Incremental Refinement

#Penn,

Penn ESE532 Fall 2019 -- DeHor

Message

» Focus on interfaces early
— Integrate first
« Start with something simple that works
end-to-end and incrementally refine
— May lack features
— May perform poorly
—...but it lets you resolve interfaces early

enn ESE532 Fall 2019 -- DeHor

enn ESE532 Fall 2019 -- DeHor

Standard Chip Aphorism

« Almost all ASICs work when first fabricated

— ...until you put them on the board.
» Then maybe 50%

* [usually say “first spin” — where each “spin”
is a separate manufacturing run]

Today

* Incremental Refinement
— Demand
— Benefits
— Simplifications
— Interfaces
— Defensive Programming
» Source Code Repositories

Penn ESE532 Fall 2019 - DeHor

Common Mistake

« Build pieces, then integrate at the end

» Spend most of available time on
components
— Then try to integrate for first time near
deadline
— Not enough time to integrate/debug at end
» Worst-case don’t have a working solution

» Spend more time fixing than if had identified
incompatibilities early

Penn ESE532 Fall 2019 -- DeHor

Recommended Approach

» Decompose problem

» Focus on how components interact
 Figure out simplified functionality easy
to assemble

Get minimum functionality end-to-end
system running early

— Even if means cut corners, solve simplified
piece of problem

+ Chart path to refine pieces to goal

Penn ESE532 Fall 2019 -- DeHor

Benefits

Penn ESE532 Fall 2019 -- DeHor

Benefits: Overview

» Agree on interfaces up front

» Supports parallel development, testing,
debugging

» Confidence-boosting win of having
something that works

Digest problem -- supports work in small
bursts

nn ESE532 Fall 2019 -- DeHor

Interface First

» Agree on interfaces up front
» Each component knows interface

» Can replace each component
independently
» Simple baseline provides scaffolding

Penn ESE532 Fall 2019 -- DeHor

Per

Parallel Development

» With interfaces defined...

» Each component can be (mostly)
independently developed and refined

» Simple baseline provides scaffolding

— Framework to test each component
independently as develop and refine

* Particularly important for team

—...helpful for individual, too
« Contains what need to think about at a time

n ESE532 Fall 2019 -- DeHor

10

Confidence Boost

* Get to see it working

* Know you have something

— Just a question of how sophisticate can
you make it?

enn ESE532 Fall 2019 -- DeHor

1

Digested Problem

» Easier to concentrate on what need to
do for this piece

» Can make tangible process in short
bursts
—...time can find between lectures...

enn ESE532 Fall 2019 -- DeHor

12

Continuous Integration

Pieces always fit into interface scaffold
Add pieces, functionality as available
See improvement

Identify interface problems early
—...and refine them

Penn ESE532 Fall 2019 -- DeHor 13

Rendering Example

* Create a 2D (video) image of a 3D
object (set of objects)

» For: computer-generated graphics
— Movies
—Video games

Penn ESE532 Fall 2019 -- DeHor 15

Rendering Decomposed

N

* Pipeline of
— Projection
» Where do the points of
this triangle end up in the viewed image?
 Matrix-multiplication to translate points

., Focal
= Point ‘0

] "'f%‘?ﬁ P
A
T e

— Rasterization
e Turn into pixels Figure from:
. . . https://commons.wikimedia.org/
« Fill pIX6|S for trlangle wiki/File:Perspective_Projection
_ Z-buffer _Principle.jpg

 Keep only the ones on top (not hidden)
-2D image + Z-depth — keep smallest

Penn ESE532 Fall 2019

17

Example

Rendering

Penn ESE532 Fall 2019 - DeHor

14

Rendering

* Input:
— collection of triangles
 Each 3 (x,y,z) positions
— Viewpoint
* Another (x,y,z) point
* Output
— 2D raster image

» Showings what's visible
—Some things will be hidden behind others

Penn ESE532 Fall 2019 -- DeHor

16

What's Hard (Preclass 1)

* What's hard about each part?
— Projection?
— Rasterization?
— Z-Buffering?

Penn ESE532 Fall 2019 -- DeHor

18

Simplifications

532 Fall 2019 -- DeHor

19

Simple Placeholder

* Identity function work?
— Pass input to output
* Get form right in simple way?
— E.g. compression
* Drop samples/images/pixels to get down?

enn ESE532 Fall 2019 -- DeHor

21

Simplified Projection Example

 Projection as identity function?
— Will definitely give wrong image
» Except when viewpoint 0,0,0....

— But the output of projection is triangles
* ...80 has right form for communication

enn ESE532 Fall 2019 -- DeHor

Simplification: Overview

Solve simpler problem
* Handle special subset of cases
— Avoid hard corner cases
» Don’t worry about performance
* Placeholder — stand in for real task
— Do minimal thing
— Use existing code

532 Fall 2019 - DeHor

20

Simplify (Preclass 3)

* How could we simplify
— Projection?
— Rasterization?
— Z-Buffering?

enn ESE532 Fall 2019 -- DeHor

22

23

Simplified Rasterization

* Maybe: Just put out pixels for triangle
corners?

— Definitely wrong
— Has right form

enn ESE532 Fall 2019 -- DeHor

24

enn ESE532 Fall 2019 - DeHor 25

Simplified Z-Buffer Example

* Intended
— Z-buffer
* Keep only the ones on top (not hidden)
—2D image + Z-depth — keep smallest
+ Simplified
— Just keep last value given
— If nothing overlaps - correct
» test with non-overlapping objects
— Even if overlap
* Looks wrong, but data has correct output form

Solve Subset

* Are there cases that are easier and
cases that are harder?
— Can arrange input/tests to only include
easier cases first
» Solve the simple cases first
— E.g. non-overlapping objects in Z-buffer
» Add support for harder cases later

nn ESE532 Fall 2019 -- DeHor

26

enn ESE532 Fall 2019 -- DeHor 27

Parallel Rendering Example

» Exploit data parallelism in rasterization
— Cut image into pieces
» Simplest: top half, bottom half
— Separate threads to rasterize each piece

Per

Parallel Rendering

* Maybe ideal: rasterization sends
triangle to appropriate rasterization
thread
—If in top half

+ send to top
—Else
» Send to bottom

* What could make hard?

n ESE532 Fall 2019 -- DeHor

28

Pei

Parallel Rasterization

« Simple
— Triangles exclusively in one region
* One half
— Send to appropriate half
* Hard

— Triangle in multiple halves
+ Send to all (both)

» Or compute what goes in each and send triangles to
each

n ESE532 Fall 2019 -- DeHor 29

Per

Parallel Rasterization
Refinement

 Start simple

— Assume only in one half, and only send
there

— Use test cases split by halves

* Incrementally get more sophisticated
— Sometimes send to both

* Incrementally more
— Compute triangles for each region

n ESE532 Fall 2019 -- DeHor

30

What makes hard?

» Can avoid that on initial pass?

— E.g. — avoid computing what part of
triangle is in each region

Penn ESE532 Fall 2019 -- DeHor

31

Non-Optimized Implementation

» Often complexity comes from optimized
implementation

— Start with simplest, non-optimized version as
placeholder
—-E.q.
* Brute force solution instead of clever algorithm
—Perhaps my most common mistake
* Large, inefficient data structure

—Instead of a more complicated, compact one

enn ESE532 Fall 2019 -- DeHor

33

Window Filter Day 13

+ Single read and write from dym, dy
« for (y=0;y<YMAX;y++)
for (x=0;x<XMAX;x++) {
dypxm=dypx; dypx=dnew; dnew=d[y+1][x+1];
dyxm=dyx; dyx=dyxp; dyxp=dy[x+1];
dymxm=dymx; dymx=dymxp; dymxp=dym[x+1];
o[y][x]=F(dymxm,dymx,dymxp,
dyxm,dyx,dyxp,
dypxm,dypx,dnew);
dym(x-1]=dyxm;dy[x-1]=dypxm; }

35

Solve Small Instances?

« If challenge is scale (handling large
problems)

— Solve small problems first
— E.g. work on 64x64 image

« If trying to hit real time, easier with small image
» Small image may fit in BRAM (on-chip memory)
—Avoid complexities of data movement initally

Penn ESE532 Fall 2019 - DeHor

32

Day 13

Window Filter

» Compute based on neighbors
o for (y=0;y<YMAX;y++)
for (x=0;x<XMAX;x++)
olylIx]=F(d[y-1][x-1].dly-1][x].dly-1][x+1],
dlylix-11.dlylIx],dlyl[x+1],
dly+1]ix-1],dly+1][x],d[y+1][x+1]);

Penn ESE532 Fall 2019 -- DeHor

34

enn ESE532 Fall 2019 -- DeHor

Software First

» Functional placeholder in software first

36

Leverage Existing Solutions

* Run some existing package, library to
get the right answer
—-E.g.
« call MATLAB to solve a matrix
* Invoke unix sort routine to get sorted data

* Invoke stand-alone image compressor or
renderer

enn ESE532 Fall 2019 -- DeHor

37

Interfaces

enn ESE532 Fall 2019 -- DeHor

39

Need to Know

* What information does each component
need to know?

* How do we get that information to each
component?

enn ESE532 Fall 2019 -- DeHor

41

What components depend upon?

Can a component output any data
(random data?) and be adequate to
exercise components interacts with?
— E.g. if feed into an integrator/accumulator
Need to output data of a given size?
» Output need to maintain some property?
— Sorted?
— Unique?
» Ok if doesn’t do its intended job well?
—E.g. intended to compress...

nn ESE532

38

Per

Division of Task

* Who is expected to do what?
-E.gq,
» Which piece discards duplicates?
» Which piece removes/flags invalid input?
— E.g. Renderer

* Does Projection only send in-bound triangles to
each region rasterizer?

« Or does each region rasterizer need to deal
with out-of-bounds triangle coordinates?

n ESE532 Fall 2019 -- DeHor

40

enn ESE532 Fall 2019 -- DeHor

Rendering Interface
(Preclass 4)

* What need to communicate between
— Projection - Rasterization
— Rasterization > Z-Buffering

42

enn ESE532

3D Rendering: Need to Know

* Projection
— How many triangles
— Triangle points (x,y,z) triples
— Viewpoint x,y,z
+ Rasterization
— How many projected triangles (for region)
— Triangle points (x,y,z) triples
» Z-buffer
— (x,y,z,color) points
— How many (when done)?

How Communicate?

* Arrays

» Streams

« Shared memory locations?
» Variable lengths?

Penn ESE532 Fall 2019 -- DeHor

3D Rendering

 All naturally streaming
« All potentially variable
— Triangles depend on object complexity and
number of objects
— Projected depend on number in each
region
* Not know in advance

— Pixels sent depends on size of projected
triangles which changes with viewpoint
* Not know in advance

enn ESE532 Fall 2019 -- DeHor

3D Rendering

» Triangles and pixels unknown up front

* How might we communicate number of

triangles/pixels — communicate when
done?

enn ESE532 Fall 2019 -- DeHor

3D Rendering

» Triangles and pixels unknown up front
* How communicate?

— Send a record that means end-of-image?
« Extra bit?

—Send in blocks with maximum size
» Accompany each block with a length
* Length is a separate stream from data

enn ESE532 Fall 2019 -- DeHor

Properties components can
assume?

Sorted?

Non—duplicate?

All in-bound?

Bound on input size in a block?

enn ESE532 Fall 2019 -- DeHor

Interfaces May Change

* Interface first
— Means less surprise later
— Doesn’t mean know everything up front

» Experience making simple work ... and
refining simple

— Often best way to understand needs of
problem

» Refine the interfaces incrementally, too

enn ESE532 Fall 2019 -- DeHor

3D Rendering Independent
Refinement

* Projection — actually calculate projected
coordinates

» Rasterization — calculate pixels per
triangle

— Test just fine using identity from projection
» Z-buffer — add in Z-ordering
— Also testable with placeholder results

enn ESE532 Fall 2019 -- DeHor

Defensive Programming

enn ESE532 Fall 2019 -- DeHor 53

3D Rendering Start

* Might start
— Projection = identity
— Rasterization = triangle corners
— Z-buffer = save last

— Connect with streams
« Streams data has one bit for last triangle, pixel

» Can put together quickly

Penn ESE532 Fall 2019 - DeHor

3D Rendering Refinement

Put them back together and work with
interface defined

Could decide to change to
communicating with blocks

Could refine for parallel rasterization
—...and could do that in pieces

Penn ESE532 Fall 2019 -- DeHor

Validate
Assumptions/Requirements

« If require a property on input of a module
— Good to have (optional) code to test for it
— [add that code second]
+ Adds code/complexity to check
— Condition it in #ifdef so can disable for
production, and re-enable for debug
— Good to catch invalid assumptions early
« ...rather than spend time debugging to discover
« Setup discussion about interface...which part got it

rong

Penn ESE532 Fall 2019 -- D€Hor

Swap Modules

* Make it easy to swap out
implementations

— Swap between placeholders and refined
implementations

— Swap among implementation versions

— Good to understand where problems
introduced

enn ESE532 Fall 2019 -- DeHor

55

Repository Message

» When working on a project, especially
with other people, want to use a source
code repository

Start one as soon as you create a
project team

enn ESE532 Fall 2019 -- DeHor

57

Source Code Repositories

git, svn

Penn ESE532 Fall 2019 - DeHor

56

Basic ldea

Central authoritative home for code
- Everyone can access

» Keeps track of all versions

— As iterate and refine

* Maybe keep track of multiple, in-use
versions at once 2 branches

Penn ESE532 Fall 2019 -- DeHor

58

Penn

Basic Benefits
» Keep organized
— Common place for everything
» Keep track of history

— Can go back to previous versions
« If screw up; if thought worked before
« Lowers chance of accidentally deleting
« ...or losing when laptop disk crashes

» Able to work on independently
— Sharef/integrate as stable

» Branches
— Experiment without breaking main version

ESE532 Fall 2019

-- DeHor
o _chanaa an intarfaca

59

More Information

* Reading supplement now includes
— Git tutorials
» Which include pointers to where to pickup tools
— Git cheat sheet

Penn ESE532 Fall 2019 -- DeHor

60

10

Integrate first

Big Ideas:

— Focus on interfaces early

Start simple

— Something that works end-to-end
Improve incrementally and iteratively

532 Fall 2019 -- DeHor

61

Admin

 Project out and introduction Wednesday
* HW?7 due Friday

enn ESE532 Fall 2019 -- DeHor

62

11

