
1

Penn ESE532 Fall 2019 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 15: October 21, 2019
Development by

Incremental Refinement

Penn ESE532 Fall 2019 -- DeHon 2

Today
• Incremental Refinement

– Demand
– Benefits
– Simplifications
– Interfaces
– Defensive Programming

• Source Code Repositories

Message
• Focus on interfaces early

– Integrate first
• Start with something simple that works

end-to-end and incrementally refine
– May lack features
– May perform poorly
– …but it lets you resolve interfaces early

Penn ESE532 Fall 2019 -- DeHon 3

Common Mistake

• Build pieces, then integrate at the end
• Spend most of available time on

components
– Then try to integrate for first time near

deadline
– Not enough time to integrate/debug at end

• Worst-case don’t have a working solution
• Spend more time fixing than if had identified

incompatibilities early
Penn ESE532 Fall 2019 -- DeHon 4

Standard Chip Aphorism

• Almost all ASICs work when first fabricated
– …until you put them on the board.

• Then maybe 50%

• [usually say “first spin” – where each “spin”
is a separate manufacturing run]

Penn ESE532 Fall 2019 -- DeHon 5

Recommended Approach
• Decompose problem
• Focus on how components interact
• Figure out simplified functionality easy

to assemble
• Get minimum functionality end-to-end

system running early
– Even if means cut corners, solve simplified

piece of problem
• Chart path to refine pieces to goal

Penn ESE532 Fall 2019 -- DeHon 6

2

Benefits

Penn ESE532 Fall 2019 -- DeHon 7

Benefits: Overview

• Agree on interfaces up front
• Supports parallel development, testing,

debugging
• Confidence-boosting win of having

something that works
• Digest problem -- supports work in small

bursts

Penn ESE532 Fall 2019 -- DeHon 8

Interface First

• Agree on interfaces up front
• Each component knows interface
• Can replace each component

independently
• Simple baseline provides scaffolding

Penn ESE532 Fall 2019 -- DeHon 9

Parallel Development

• With interfaces defined…
• Each component can be (mostly)

independently developed and refined
• Simple baseline provides scaffolding

– Framework to test each component
independently as develop and refine

• Particularly important for team
– …helpful for individual, too

• Contains what need to think about at a time
Penn ESE532 Fall 2019 -- DeHon 10

Confidence Boost

• Get to see it working
• Know you have something

– Just a question of how sophisticate can
you make it?

Penn ESE532 Fall 2019 -- DeHon 11

Digested Problem

• Easier to concentrate on what need to
do for this piece

• Can make tangible process in short
bursts
– …time can find between lectures…

Penn ESE532 Fall 2019 -- DeHon 12

3

Continuous Integration

• Pieces always fit into interface scaffold

• Add pieces, functionality as available

• See improvement

• Identify interface problems early

– …and refine them

Penn ESE532 Fall 2019 -- DeHon 13

Example

Rendering

Penn ESE532 Fall 2019 -- DeHon 14

Rendering Example

• Create a 2D (video) image of a 3D
object (set of objects)

• For: computer-generated graphics
– Movies
– Video games

Penn ESE532 Fall 2019 -- DeHon 15

Rendering

• Input:
– collection of triangles

• Each 3 (x,y,z) positions

– Viewpoint
• Another (x,y,z) point

• Output
– 2D raster image

• Showings what’s visible
– Some things will be hidden behind others

Penn ESE532 Fall 2019 -- DeHon 16

Rendering Decomposed

• Pipeline of
– Projection

• Where do the points of
this triangle end up in the viewed image?

• Matrix-multiplication to translate points
– Rasterization

• Turn into pixels
• Fill pixels for triangle

– Z-buffer
• Keep only the ones on top (not hidden)

– 2D image + Z-depth – keep smallestPenn ESE532 Fall 2019 -- DeHon 17

Figure from:
https://commons.wikimedia.org/
wiki/File:Perspective_Projection
_Principle.jpg

What’s Hard (Preclass 1)

• What’s hard about each part?
– Projection?
– Rasterization?
– Z-Buffering?

Penn ESE532 Fall 2019 -- DeHon 18

4

Simplifications

Penn ESE532 Fall 2019 -- DeHon 19

Simplification: Overview

• Solve simpler problem
• Handle special subset of cases

– Avoid hard corner cases
• Don’t worry about performance
• Placeholder – stand in for real task

– Do minimal thing
– Use existing code

Penn ESE532 Fall 2019 -- DeHon 20

Simple Placeholder

• Identity function work?
– Pass input to output

• Get form right in simple way?
– E.g. compression

• Drop samples/images/pixels to get down?

Penn ESE532 Fall 2019 -- DeHon 21

Simplify (Preclass 3)

• How could we simplify
– Projection?
– Rasterization?
– Z-Buffering?

Penn ESE532 Fall 2019 -- DeHon 22

Simplified Projection Example

• Projection as identity function?
– Will definitely give wrong image

• Except when viewpoint 0,0,0….
– But the output of projection is triangles

• …so has right form for communication

Penn ESE532 Fall 2019 -- DeHon 23

Simplified Rasterization

• Maybe: Just put out pixels for triangle
corners?
– Definitely wrong
– Has right form

Penn ESE532 Fall 2019 -- DeHon 24

5

Simplified Z-Buffer Example
• Intended

– Z-buffer
• Keep only the ones on top (not hidden)

– 2D image + Z-depth – keep smallest

• Simplified
– Just keep last value given
– If nothing overlaps à correct

• test with non-overlapping objects
– Even if overlap

• Looks wrong, but data has correct output form
Penn ESE532 Fall 2019 -- DeHon 25

Solve Subset

• Are there cases that are easier and
cases that are harder?
– Can arrange input/tests to only include

easier cases first
• Solve the simple cases first

– E.g. non-overlapping objects in Z-buffer
• Add support for harder cases later

Penn ESE532 Fall 2019 -- DeHon 26

Parallel Rendering Example

• Exploit data parallelism in rasterization
– Cut image into pieces

• Simplest: top half, bottom half
– Separate threads to rasterize each piece

Penn ESE532 Fall 2019 -- DeHon 27

Parallel Rendering

• Maybe ideal: rasterization sends
triangle to appropriate rasterization
thread
– If in top half

• send to top
– Else

• Send to bottom

• What could make hard?

Penn ESE532 Fall 2019 -- DeHon 28

Parallel Rasterization

• Simple
– Triangles exclusively in one region

• One half
– Send to appropriate half

• Hard
– Triangle in multiple halves

• Send to all (both)
• Or compute what goes in each and send triangles to

each
Penn ESE532 Fall 2019 -- DeHon 29

Parallel Rasterization
Refinement

• Start simple
– Assume only in one half, and only send

there
– Use test cases split by halves

• Incrementally get more sophisticated
– Sometimes send to both

• Incrementally more
– Compute triangles for each region

Penn ESE532 Fall 2019 -- DeHon 30

6

What makes hard?

• Can avoid that on initial pass?
– E.g. – avoid computing what part of

triangle is in each region

Penn ESE532 Fall 2019 -- DeHon 31

Solve Small Instances?

• If challenge is scale (handling large
problems)

– Solve small problems first

– E.g. work on 64x64 image

• If trying to hit real time, easier with small image

• Small image may fit in BRAM (on-chip memory)

– Avoid complexities of data movement initally

Penn ESE532 Fall 2019 -- DeHon 32

Non-Optimized Implementation
• Often complexity comes from optimized

implementation
– Start with simplest, non-optimized version as

placeholder
– E.g.

• Brute force solution instead of clever algorithm
– Perhaps my most common mistake

• Large, inefficient data structure
– Instead of a more complicated, compact one

Penn ESE532 Fall 2019 -- DeHon 33

Window Filter
• Compute based on neighbors
• for (y=0;y<YMAX;y++)

for (x=0;x<XMAX;x++)
o[y][x]=F(d[y-1][x-1],d[y-1][x],d[y-1][x+1],

d[y][x-1],d[y][x],d[y][x+1],
d[y+1][x-1],d[y+1][x],d[y+1][x+1]);

Penn ESE532 Fall 2019 -- DeHon 34

Day 13

Window Filter
• Single read and write from dym, dy
• for (y=0;y<YMAX;y++)

for (x=0;x<XMAX;x++) {
dypxm=dypx; dypx=dnew; dnew=d[y+1][x+1];
dyxm=dyx; dyx=dyxp; dyxp=dy[x+1];
dymxm=dymx; dymx=dymxp; dymxp=dym[x+1];
o[y][x]=F(dymxm,dymx,dymxp,

dyxm,dyx,dyxp,
dypxm,dypx,dnew);

dym[x-1]=dyxm;dy[x-1]=dypxm; }
Penn ESE532 Fall 2019 -- DeHon 35

Day 13

Software First

• Functional placeholder in software first

Penn ESE532 Fall 2019 -- DeHon 36

7

Leverage Existing Solutions

• Run some existing package, library to
get the right answer
– E.g.

• call MATLAB to solve a matrix
• Invoke unix sort routine to get sorted data
• Invoke stand-alone image compressor or

renderer

Penn ESE532 Fall 2019 -- DeHon 37

What components depend upon?
• Can a component output any data

(random data?) and be adequate to
exercise components interacts with?
– E.g. if feed into an integrator/accumulator

• Need to output data of a given size?
• Output need to maintain some property?

– Sorted?
– Unique?

• Ok if doesn’t do its intended job well?
– E.g. intended to compress…

Penn ESE532 Fall 2019 -- DeHon 38

Interfaces

Penn ESE532 Fall 2019 -- DeHon 39

Division of Task

• Who is expected to do what?
– E.g.,

• Which piece discards duplicates?
• Which piece removes/flags invalid input?

– E.g. Renderer
• Does Projection only send in-bound triangles to

each region rasterizer?
• Or does each region rasterizer need to deal

with out-of-bounds triangle coordinates?

Penn ESE532 Fall 2019 -- DeHon 40

Need to Know

• What information does each component
need to know?

• How do we get that information to each
component?

Penn ESE532 Fall 2019 -- DeHon 41

Rendering Interface
(Preclass 4)

• What need to communicate between
– Projection à Rasterization
– Rasterization à Z-Buffering

Penn ESE532 Fall 2019 -- DeHon 42

8

3D Rendering: Need to Know
• Projection

– How many triangles
– Triangle points (x,y,z) triples
– Viewpoint x,y,z

• Rasterization
– How many projected triangles (for region)
– Triangle points (x,y,z) triples

• Z-buffer
– (x,y,z,color) points
– How many (when done)?

Penn ESE532 Fall 2019 -- DeHon 43

How Communicate?

• Arrays
• Streams
• Shared memory locations?
• Variable lengths?

Penn ESE532 Fall 2019 -- DeHon 44

3D Rendering

• All naturally streaming
• All potentially variable

– Triangles depend on object complexity and
number of objects

– Projected depend on number in each
region
• Not know in advance

– Pixels sent depends on size of projected
triangles which changes with viewpoint
• Not know in advance

Penn ESE532 Fall 2019 -- DeHon 45

3D Rendering

• Triangles and pixels unknown up front
• How might we communicate number of

triangles/pixels – communicate when
done?

Penn ESE532 Fall 2019 -- DeHon 46

3D Rendering

• Triangles and pixels unknown up front
• How communicate?

– Send a record that means end-of-image?
• Extra bit?

– Send in blocks with maximum size
• Accompany each block with a length
• Length is a separate stream from data

Penn ESE532 Fall 2019 -- DeHon 47

Properties components can
assume?

• Sorted?
• Non–duplicate?
• All in-bound?
• Bound on input size in a block?

Penn ESE532 Fall 2019 -- DeHon 48

9

Interfaces May Change

• Interface first
– Means less surprise later
– Doesn’t mean know everything up front

• Experience making simple work … and
refining simple
– Often best way to understand needs of

problem
• Refine the interfaces incrementally, too

Penn ESE532 Fall 2019 -- DeHon 49

3D Rendering Start

• Might start
– Projection = identity
– Rasterization = triangle corners
– Z-buffer = save last
– Connect with streams

• Streams data has one bit for last triangle, pixel

• Can put together quickly

Penn ESE532 Fall 2019 -- DeHon 50

3D Rendering Independent
Refinement

• Projection – actually calculate projected
coordinates

• Rasterization – calculate pixels per
triangle
– Test just fine using identity from projection

• Z-buffer – add in Z-ordering
– Also testable with placeholder results

Penn ESE532 Fall 2019 -- DeHon 51

3D Rendering Refinement

• Put them back together and work with
interface defined

• Could decide to change to
communicating with blocks

• Could refine for parallel rasterization
– …and could do that in pieces

Penn ESE532 Fall 2019 -- DeHon 52

Defensive Programming

Penn ESE532 Fall 2019 -- DeHon 53

Validate
Assumptions/Requirements

• If require a property on input of a module
– Good to have (optional) code to test for it
– [add that code second]

• Adds code/complexity to check

– Condition it in #ifdef so can disable for
production, and re-enable for debug

– Good to catch invalid assumptions early
• …rather than spend time debugging to discover
• Setup discussion about interface…which part got it

wrong
Penn ESE532 Fall 2019 -- DeHon 54

10

Swap Modules

• Make it easy to swap out
implementations
– Swap between placeholders and refined

implementations
– Swap among implementation versions
– Good to understand where problems

introduced

Penn ESE532 Fall 2019 -- DeHon 55

Source Code Repositories

git, svn

Penn ESE532 Fall 2019 -- DeHon 56

Repository Message

• When working on a project, especially
with other people, want to use a source
code repository

• Start one as soon as you create a
project team

Penn ESE532 Fall 2019 -- DeHon 57

Basic Idea

• Central authoritative home for code
– Everyone can access

• Keeps track of all versions
– As iterate and refine

• Maybe keep track of multiple, in-use
versions at once à branches

Penn ESE532 Fall 2019 -- DeHon 58

Basic Benefits
• Keep organized

– Common place for everything
• Keep track of history

– Can go back to previous versions
• If screw up; if thought worked before
• Lowers chance of accidentally deleting
• …or losing when laptop disk crashes

• Able to work on independently
– Share/integrate as stable

• Branches
– Experiment without breaking main version
– E.g. change an interface…

Penn ESE532 Fall 2019 -- DeHon 59

More Information

• Reading supplement now includes
– Git tutorials

• Which include pointers to where to pickup tools
– Git cheat sheet

Penn ESE532 Fall 2019 -- DeHon 60

11

Penn ESE532 Fall 2019 -- DeHon 61

Big Ideas:

• Integrate first
– Focus on interfaces early

• Start simple
– Something that works end-to-end

• Improve incrementally and iteratively

Penn ESE532 Fall 2019 -- DeHon 62

Admin
• Project out and introduction Wednesday
• HW7 due Friday

