ESE532: System-on-a-Chip Architecture

Day 18: October 30, 2019 Design Space Exploration

Penn ESE532 Fall 2019 -- DeHon

Today

- Design-Space Exploration
 - Generic
 - Concrete example:
 - Fast Fourier Transform (FFT)

enn ESE532 Fall 2019 -- DeHon

Message

- The universe of possible implementations (design space) is large
 - Many dimensions to explore
- Formulate carefully
- Approach systematically
- Use modeling along the way for guidance

enn ESE532 Fall 2019 -- DeHon

3

Design-Space Exploration

Generic

enn ESE532 Fall 2019 -- DeHon

Design Space

- · Have many choices for implementation
 - Alternatives to try
 - Parameters to tune
 - Mapping options
- This is our freedom to impact implementation costs
 - Area, delay, energy

Pann ESE532 Eall 2010 -- Dallon

5

Design Space

- Ideally
 - Each choice orthogonal axis in high-dimensional space
 - Want to understand points in space
 - Find one that bests meets constraints and goals
- · Practice
 - Seldom completely orthogonal
 - Requires cleverness to identify dimensions
 - Messy, cannot fully explore

Penn ESE532 Fall 2019 - DelCan understand, prioritize, guide

Preclass 1

- What choices (design-space axes) can we explore in mapping a task to an SoC?
- · What showed up in homework so far?

Penn ESE532 Fall 2019 -- DeHon

From Homework?

- · Types of parallelism
- · Mapping to different fabrics / hardware
- · How manage memory, move data
 - DMA, streaming
 - Data access patterns
- · Levels of parallelism
- · Pipelining, unrolling, II, array partitioning
- · Data size (precision)

Penn ESE532 Fall 2019 -- DeHon

8

Design-Space Choices

- · Type of parallelism
- · How decompose / organize parallelism
- Area-time points (level exploited)
- What resources we provision for what parts of computation
- · Where to map tasks
- · How schedule/order computations
- · How synchronize tasks
- · How represent data
- · Where place data; how manage and move
- What precision use in computations

Generalize Continuum

- Encourage to think about parameters (axes) that capture continuum to explore
- · Start from an idea
 - Maybe can compute with 8b values
 - Maybe can put matrix-mpy computation on FPGA fabric
 - Move data in 1KB chunks
- Identify general knob
 - Tune intermediate bits for computation
 - How much of computation go on FPGA fabric
- www.esessWhat.is.optimal data transfer size?

10

Design Space Explore

- Think systematically about how might map the application
- · Avoid overlooking options
- · Understand tradeoffs
- The larger the design space
 - →more opportunities to find good solutions
 Reduce bottlenecks

Penn ESE532 Fall 2019 -- DeHon

Elaborate Design Space

- · Refine design space as you go
- · Ideally identify up front
- · Practice bottlenecks and challenges
 - will suggest new options / dimensions
 - If not initially expect memory bandwidth to be a bottleneck...
- Some options only make sense in particular sub-spaces
 - Bitwidth optimization not a big issue on the 64b processor

• More interesting on vector, FPGA

12

Tools

- Sometimes tools will directly help you explore design space
 - What SDSoC/Vivado HLS support?
- Often they will not
 - What might you want that does not support?

Penn ESE532 Fall 2019 -- DeHon

14

Tools

- Sometimes tools will directly help you explore design space
 - Unrolling, pipelining, II
 - Array packing and partitioning
 - Some choices for data movement
 - DMA pipelining and transfer sizes
 - Some loop transforms
 - Granularity to place on FPGA
- · Often they will not
 - Need to reshape functions and loops
 - Line buffers
- Data representations and sizes

Code for Exploration

- Can you write your code with parameters (#define) that can easily change to explore continuum?
 - Unroll factor?
 - Number of parallel tasks?
 - Size of data to move?
- Want to make it easy to explore different points in space

Penn ESE532 Fall 2019 -- DeHon

16

Design-Space Exploration

Example FFT

Penn ESE532 Fall 2019 -- DeHon

17

Discrete Sampling Represent as time sequence Discretely sample in time What we can do directly with an Analog-to-Digital (A2D) converter http://en.wikipedia.org/wiki/File:Pcm.svg

Fourier Transform

- Identify spectral components (frequencies)
- Convert between Time-domain to Frequency-domain
 - E.g. tones from data samples
 - Central to audio coding e.g. MP3 audio

$$Y[k] = \sum_{j=0}^{n-1} \left(X[j]e^{-2i\pi \frac{k}{n}} \right)$$

Penn ESE532 Fall 2019 -- De

FT as Matching

- Fourier Transform is essentially performing a dot product with a frequency
 - How much like a sine wave of freq. f is this?

$$Y[k] = \sum_{j=0}^{n-1} \left(X[j]e^{-2i\pi \frac{k}{n}} \right)$$

nn ESE532 Fall 2019 -- De

27

29

Fast-Fourier Transform (FFT)

- · Efficient way to compute FT
- O(N*log(N)) computation
- Contrast N² for direct computation
 - N dot products
 - Each dot product has N points (multiply-adds)

$$Y[k] = \sum_{j=0}^{n-1} \left(X[j] e^{-2i\pi \frac{k}{n}} \right)$$

nn ESE532 Fall 2019 -- De

FFT

- · Large space of FFTs
- · Radix-2 FFT Butterfly

Basic FFT Butterfly

- Y0=X0+W(stage,butterfly)*X1
- Y1=X0-W(stage,butterfly)*X1
- · Common sub expression, compute once: W(stage,butterfly)*X1

28

Preclass 2

- · What parallelism options exist?
 - Single FFT
 - Sequence of FFTs

FFT Parallelism

Spatial

Pipeline

Streaming

· By column

- Choose how many Butterflies to serialize on a PE
- · By subgraph
- · Pipeline subgraphs

Bit Serial

- · Could compute the add/multiply bit serially
 - One full adder per adder
 - W full adders per multiply
 - W=16, maybe 20-30 LUTs
 - -70,000 LUTs
 - ~= 70,000/30 ~= 2330 butterflies
 - -512-point FFT has 2304 butterflies
- · Another dimension to design space:
 - How much serialize word-wide operators

33

- Use LUTs vs. DSPs

n ESE532 Fall 2019 -- DeHon

Communication

- How implement the data shuffle between processors or accelerators?
 - Memories / interconnect ?
 - How serial / parallel ?
 - Network?

SE532 Fall 2019 -- DeHon

Data Precision

- Input data from A2D likely 12b
- · Output data, may only want 16b
- What should internal precision and representation be?

enn ESE532 Eall 2010 - DeHon

41

Number Representation

- · Floating-Point
 - IEEE standard single (32b), double (64b)
 - · With mantissa and exponent
 - · ...half, quad
- Fixed-Point
 - Select total bits and fraction
 - E.g. 16.8 (16 total bits, 8 of which are fraction)
 Represent 1/256 to 256-1/256
 - $-A(mpy) \sim W^2$, $A(add) \sim W$

Penn ESE532 Fall 2019 -- DeHon

43

Operator Sizes		
Operator	LUTs	LUTs + DSPs
Double FP Add	712	681+3 DSPs
Single FP Add	370	219+2 DSPs
Fixed-Point Add (32)	16	
Fixed-Point Add (n)	n/2	
Double FP Multiply	2229	223+10 DSPs
Single FP Multiply	511	461+3 DSPs
Fixed Multiply (32x32)	1099	
Fixed Multiply (16x16)	283	1 DSP
Fixed Multiply (18x25)		1 DSP
Fixed Multiply (n)	~ n ²	
P (Floating Point) sizes from: https://www.xilinx.com/	/support/documentation/in_doc	umentation/ru/floating-point.htm

Heterogeneous Precision

- · May not be same in every stage
 - W factors less than 1
 - Non-fraction grows at most 1b per stage

in ESE532 Fall 2019 -- De

-1

W Coefficients

- · Precompute and store in arrays
- · Compute as needed
 - How?
 - · sin/cos hardware?
 - · CORDIC?
 - Polynominal approximation?
- · Specialize into computation
 - Many evaluate to 0, ± 1 , $\pm \frac{1}{2}$,
 - Multiplication by 0, 1 not need multiplier...

Penn ESE532 Fall 2019 -- DeHon

16

FFT (partial) Design Space

- Parallelism
- Decompose
- Size/granularity of accelerator
 - Area-time
- · Sequence/share
- Communicate
- · Representation/precisions
- Twiddle

Penn ESE532 Fall 2019 -- DeHor

47

Big Ideas:

- · Large design space for implementations
- Worth elaborating and formulating systematically
 - Make sure don't miss opportunities
- · Think about continuum for design axes
- Model effects for guidance and understanding

Penn ESE532 Fall 2019 -- DeHon

Admin

- P1 milestone
 - Due Friday
- P2 out
 - Asks you to identify design space

Penn ESE532 Fall 2019 -- DeHon