ESES532:
System-on-a-Chip Architecture

Day 19: November 4, 2019
Verification 1

& Penn,

Today

* Motivation

» Challenge and Coverage

» Golden Model / Reference Specification
» Automation and Regression

nn ESE532 Fall 2019 -- DeHor

Message

* If you don’t test it, it doesn’t work.

Verification is important and challenging
» Demands careful thought

— Tractable and adequate coverage
» Value to a simple functional reference
* Must be automated and rerun with
changes
— Often throughout lifecycle of design

enn ESE532 Fall 2019 -- DeHor

Goal

» Assure design works correctly

— Not fail and lose consumer confidence.
« ...or lose them money, privacy, service
availability....

— Not kill anyone
« Ethical issue
— Not lose points on your grade ©

enn ESE532 Fall 2019 -- DeHor

Challenge

» Designs are complex
— Many ways things can go wrong
— Many subtle ways things can go wrong
— Many tricky interactions
» Designs are often poorly specified
— Complex to completely specify

enn ESE532 Fall 2019 -- DeHor

Verification

» Often dominant cost in product
— Requires most manpower (cost)
— Takes up most of schedule

enn ESE532 Fall 2019 -- DeHor

ASIC: Percentage of Project Time Spent in Verification

2012: Average 55%
2014: Average 57%
2016: Average 54%
2018: Average 53%

-20% 219%30% 106-40% 41950 51960 619%70% 71%-80% a0%
of ASIC Project Time Spent In Verf

Menior

https://semiengineering.com/the-weather-report-2018-study-on-ic-asic-verification-trends/
Penn ESE532 Fall 2019 -- DeHon

ASIC: Mean % Time Design Engineer is Doing Design vs Verification

Penn ESE532 Fall 2019 -- DeHon

-
e 47% 6%

5 ® Doing Design
mDoing Veifcation
§w

. o 53% 54%
2014 2016

ntage Time ASIC Design Engineer is Do

Menior

https://semiengineering.com/the-weather-report-2018-study-on-ic-asic-verification-trends/

Correctness?

» How do we define correctness for a
design?
* How do we know the design is correct?
* How do we know the design remains
correct when?
— Add a some feature
— Perform an optimization

Life Cycle
+ Design
— specify what means to be correct
» Development
— Implement and refine
— Fix bugs
— Optimize
» Operation and Maintenance
— Discover bugs, new uses and interaction
—Fix and provide updates
» Upgrade/revision

Penn ESE532 Fall 2019 -- DeHon 10

— Fix a bug
Penn ESE532 Fall 2019 -- DeHor 9
Testing and Coverage
Penn ESE532 Fall 2019 -- DeHor 11

Strawman Testing

Validate the design by testing it:

» Create a set of test inputs

* Apply test inputs

 Collect response outputs

» Check if outputs match expectations

Penn ESE532 Fall 2019 -- DeHon 12

Strawman: Inputs and Outputs

Validate the design by testing it:

» Create a set of test inputs

— How do we generate an adequate set of
inputs? (know if a set is adequate?)

* Apply test inputs

» Collect response outputs

» Check if outputs match expectations
— How do we know if outputs are correct?

Try 1: Inputs and Outputs

» Create a set of test inputs
— How do we generate an adequate set of
inputs? (know if a set is adequate?)
* All possible inputs
» Check if outputs match expectations
— How do we know if outputs are correct?
» Manually identify correct output

Penn ESE532 Fall 2019 -- DeHor

14

Penn ESE532 Fall 2019 - DeHor 13
How many input cases?
Combinational: E)
« 10-input AND gate? =
* Any N-input combinational function?
Penn ESES532 Fall 2019 -- DeHor 15

Add Pipelining

» The output doesn’t correspond to the
input on a single cycle

* Need to think about inputs sequences to
output sequences

* How many input cases?

-

enn ESE532 Fall 2019 -- DeHor

16

Penn

Add Pipelining

» The output doesn’t correspond to the
input on a single cycle

* Need to think about inputs sequences to
output sequences

* How many input cases for a generic
acyclic circuit?
— Depth d
—Inputs n

ESE532 Fall 2019 -- DeHor

17

Per

Add Feedback State

* When have state

— Different inputs can produce different
outputs

» Behavior depends on state

* Need to reason about all states the
design can be in

n ESE532 Fall 2019 -- DeHor

18

How many input cases?

* Process 1000 Byte packet
— No state kept between packets
* Process 1000 Byte packets
— Keep 32b of state between packets

Penn ESE532 Fall 2019 - DeHor 19

Structural Simplifications

* How many cases if treat as 7-input
function?

* How many useful cases
—Ifhold s at 0?]
—Ifhold s at 1? 3
— Together total cases? 0

Penn ESE532 Fall 2019 -- DeHor 21

Finite State Machine

* What input cases should we try to exercise for
an FSM? (goal for test cases)

int state;

while (true) {

switch (state) {
case (ST1): out=1; state=ST2; break;
case (ST2): if (in>0) {out=2; state=ST3;}

else {out=0; state=ST2;} break;
Pem SSEEASE (ST3): 23

Observation

« Cannot afford
— Exhaustively generate input cases
— Manual write output expectations

« Will need to be smarter about test case
selection

Penn ESE532 Fall 2019 - DeHon 20

‘:vaS})M\JH 2019 -- DeHon 22

Useful Test Cases

What values of s
will be interesting?

int fun(int s,a,b,c,d) {
if (s>20)
if (s>100)
return(a+b); else return(b+c);

else When s=10,

. what values of a, b, c, d
if (s<0) interesting?

return(c+d); else return(a+d);

Penn

Coverage

Do our tests execute every line of code?
— What percentage of the code is exercised?
Gate-level designs
— Can we toggle every gate output?
* Necessary but not sufficient
— Not exercised or not toggled, definitely not
testing some functionality
* Remember: If you don't test it, it doesn’t work.

* Measurable
ESES532 Fall 2019 -- DeHon 24

So far...

* |dentifying test stimulus important and
tricky

— Cannot generally afford exhaustive

— Need understand/exploit structure
» Coverage metrics a start

— Not complete answer

enn ESE532 Fall 2019 -- DeHor

Reference Specification
(Golden Model)

Penn ESE532 Fall 2019 - DeHor

Strawman: Inputs and Outputs

Validate the design by testing it:
» Create a set of test inputs

— How do we generate an adequate set of
inputs? (know if a set is adequate?)

* Apply test inputs

» Collect response outputs

» Check if outputs match expectations
— How do we know if outputs are correct?

enn ESE532 Fall 2019 -- DeHor

Problem
* Manually writing down results for all
input cases
— Tedious

— Error prone
— ...simple not viable for large number cases
need to cover
« Definitely not viable exhaustive
« ...and still not viable when select intelligently

enn ESE532 Fall 2019 -- DeHor

Specification Model

* |deally, have a function that can
— compute the correct output
— for any input sequence
* Gold Standard” — an oracle
— Whatever the function says is truth
» Could be another program

— Written in a different language? Same
language?

enn ESE532 Fall 2019 -- DeHor

29

Testing with Reference
Specification
Validate the design by testing it:
» Create a set of test inputs
* Apply test inputs

— To implementation under test
— To reference specification

Collect response outputs
Check if outputs match

enn ESE532 Fall 2019 -- DeHor

Test against Specification

» Relieved ourselves of writing outputs

« Still have to select input cases

— Can freely use larger set since not

responsible for manually generating output
match

enn ESE532 Fall 2019 -- DeHor

31

Random Inputs

Can use random inputs

— Since can generate expected output for
any case

Use coverage metric to see how well
random inputs are exercising the code
Can be particularly good to identify

interactions and corner cases didn’t
think of manually

Still unlikely to generate very obscure
cases

enn ESE532 Fall 2019 -- DeHor

32

Pen|

Combinational:

Random inputs
Expected number inputs
to cause output to toggle?

* 10-input AND gate?

* Any N-input combinational function?

" ESE532 Fall 2019 - DeHor

33

Random Inputs

» Expected number of tests to exercise
both cases?

— Compare exhaustive

* What would we 1
like to happen 3
to reduce? 0
— What would we
select manually?

enn ESE532 Fall 2019 -- DeHor

34

Penn

Random Testing

+ Completely random may be just as bad
as exhaustive
— Expected time to exercise interesting piece
of code
— Expected time to produce a legal input
* E.g. — random packets will almost always have
erroneous checksums
— E.g. random bytes won’t generate
duplicate chunks, or much opportunity for
LZW compression

ESE532 Fall 2019 -- DeHor

35

Peni

Biased Random
* Non-uniform random generation of
inputs
— Compute checksums correctly most of the
time
« Control rate and distribution of checksum errors
» Randomize properties of input, E.g.
— Lengths of repeated sequences
— Distance between repeated sequences
— Edit sequence applied to differentiate files

n ESE532 Fall 2019 -- DeHor

36

Testing with Reference
Specification
Validate the design by testing it:
» Create a set of test inputs
* Apply test inputs

— To implementation under test
— To reference specification

» Collect response outputs
» Check if outputs match

Penn ESE532 Fall 2019 -- DeHor 37
Standard
* Many standards includes a reference
implementation.
enn ESE532 Fall 2019 -- DeHor 39

Specification

* Where would we get a reference
specification?
—and why should we trust it?

— Isn’t this just another design that can be
equally buggy?

nn ESE532 Fall 2019 -- DeHor

38

Existing Product

* Many times there’s an existing product
or open-source implementation...

enn ESE532 Fall 2019 -- DeHor

40

Develop Specification

* Maybe develop a simple, functional
implementation as part of early design

enn ESE532 Fall 2019 -- DeHor

41

Penn

Specification Correct?

* How would we know the specification is

correct? -- why should we trust it?

— Simpler/smaller
* Less opportunity for bugs
 Written for function/clarity not performance

— Different
» Ok as long as reference and implementation
don’t have same bugs
—Debug and test them against each other

ESE532 Fall 2019 -- DeHor

42

Common Bugs

Combinational (for simplicity)

* 10 input function

» Assume two specifications have 1%
error rate (1% of input cases wrong)

* Assume independent

— (key assumption — weaker to extent wrong)

Probability of both giving same wrong
result?

— For a particular input case?

s Across all input cases?

43

Day 13

Window Filter

+ Compute based on neighbors

« for (y=0;y<YMAX;y++)
for (x=0;x<XMAX;x++)
olylix]=F(d[y-1]x-1],d[y-1][x].d[y-1][x+1],

dlyl[x-11.dlyl(x].dly][x+1],
dly+1][x-11,d[y+1]x].d[y+1]x+1]);

Penn ESE532 Fall 2019 -- DeHor

44

Day 13

Window Filter

+ Single read and write from dym, dy
« for (y=0;y<YMAX;y++)
for (x=0;x<XMAX;x++) {
dypxm=dypx; dypx=dnew; dnew=d[y+1][x+1];
dyxm=dyx; dyx=dyxp; dyxp=dy[x+1];
dymxm=dymx; dymx=dymxp; dymxp=dym[x+1];
o[y][x]=F(dymxm,dymx,dymxp,
dyxm,dyx,dyxp,
dypxm,dypx,dnew);

____dym[x-1]=dyxm;dy[x-1]=dypxm; } 45

Penn

Simpler Functional

» Other examples of functional
specification being simpler than
implementation?

ESE532 Fall 2019 -- DeHor

46

Simpler Functional

» Sequential vs. parallel
» Unpipelined vs. pipelined
« Simple algorithm
— Brute force?
* No data movement optimizations

» Use robust, mature (well-tested)
building blocks

Penn ESE532 Fall 2019 -- DeHor 47

Penn

Testing with Reference
Specification
Validate the design by testing it:
» Create a set of test inputs
* Apply test inputs

— To implementation under test
— To reference specification

 Collect response outputs
» Check if outputs match

ESE532 Fall 2019 -- DeHor

48

Coverage

» Of specification or implementation?
— Almost certainly both

» Specification may have a case split that
implementation doesn’t have
— E.g. handle exceptional case

* Implementation typically have many
more cases to handle in general

enn ESE532 Fall 2019 -- DeHor

49

Automation and Regression

Penn

Automated

» Testing suite must be automated
— Single script or make build to run
— Just start the script

— Runs through all testing and comparison
without manual interaction
— Including scoring and reporting a single
pass/fail result
» Maybe a count of failing cases

ESE532 Fall 2019 -- DeHor

51

enn ESE532 Fall 2019 -- DeHor 50
Regression Test
* Regression Test -- Suite of tests to run
and validate functionality
enn ESE532 Fall 2019 -- DeHor 52

Regression Tests

* One big test or many small tests?
» Benefit of many small tests?
» Benefit of big test(s)?

enn ESE532 Fall 2019 -- DeHor

53

Automation Mandatory

» Will run regression suite repeatedly
during Life Cycle
— Every change
— As optimize
— Every bug fix

enn ESE532 Fall 2019 -- DeHor

54

Penn

Life Cycle
» Design
— specify what means to be correct
* Development
— Implement and refine
— Fix bugs
— optimize
* Operation and Maintenance
— Discover bugs, new uses and interaction
—Fix and provide updates
» Upgrade/revision

ESE532 Fall 2019 -- De

55

Per

Automation Value

* Engineer time is bottleneck
— Expensive, limited resource

— Esp. the engineer(s) that understand what the
design should do

+ Cannot spend that time evaluating/running
tests

* Reserve it for debug, design, creating tests
+ Capture knowledge in tools and tests

n ESE532 Fall 2019 -- DeHor

56

When find a bug

« If regression suite didn’t originally find it
— Add a test (expand regression suite) so will
have a test to cover

* Make sure won’t miss it again
* Test suite monotonically improving

enn ESE532 Fall 2019 -- DeHor 57

Penn

When add a feature

» Add a test to validate that feature
— And interaction with existing functionality

* Maybe add the test first...

— See test identifies lack of feature before
add functionality

— ...then see (correctly added) feature
satisfies test

ESE532 Fall 2019 -- DeHor

58

Pen|

Continuous Integration

* When commit code to shared repo (git, svn)
— Build and run regression suite
— Perhaps before allow commit

— Guarantee not break good version

« Or, at least, know how functional/broken the current
version is

+ Alternately, nightly regression
— Automation to check out, build, run tests

1 ESE532 Fall 2019 -- DeHor

59

Regression Test Size

* Want to be comprehensive
— More tests better....
¢ Want to run in tractable time

— Few minutes once make change or when
checkin

— Cannot run for weeks or months
— Might want to at least run overnight
» Sometimes forced to subset
— Small, focused subset for immediate test
- Com[ﬂ)Fr‘e‘zhensive test for full validation

Penn ESE532 Fall 2019 - O

60

10

Unit Tests

* Regression for individual components
» Good to validate independently
* Lower complexity
— Fewer tests 2 :
— Complete quickly 2
* Make sure component(s) working
before run top-level design tests
— One strategy for long top-level regression

enn ESE532 Fall 2019 -- DeHor

61

P

Functional Scaffolding
* If functional decomposed into
components like implementation

» Replace individual components with
implementation

— Use reference/functional spec for rest

nn ESE532 Fall 2019 -- DeHor

62

Functional Scaffolding
* If functional decomposed into
components like implementation

* Replace individual components with
implementation
— Use reference/functional spec for rest

* Independent test of integration for that

enn ESE532 Fall 2019 -- DeHor

63

enn ESE532 Fall 2019 -- DeHor

Functional Scaffolding

* |If functional decomposed into
components like implementation

* Run reference component and
implementation together and check
outputs

col

Py copy
>~(B)

Summarize

64

Pen|

Decompose Specification

» Should specification decompose like
implementation?
— ultimate golden reference
« Only if that decomposition is simplest
» But, worth refining
— Golden reference simplest

— Intermediate functional decomposed
« Validate it versus golden
« Still simpler than final implementation

s Then use with implementation

1 ESE532 Fall 201

65

Per

Big Ideas

» Testing

— Designs are complicated, need extensive
validation — If you don’t test it, it doesn’t work.

— Exhaustive testing not tractable
— Demands care
— Coverage one tool for helping identify
» Reference specification as “gold” standard
— Simple, functional
» Must automate regression
— Use regularly throughout life cycle

n ESE532 Fall 2019 -- DeHc

66

11

* P2 due Friday

E532 Fall 2019 -- DeHor

Admin

67

12

