ESES32:
System-on-a-Chip Architecture

Day 6: September 18, 2019
Data-Level Parallelism

& Penn

Today

Data-level Parallelism

For Parallel Decomposition
Architectures

Concepts

NEON

532 Fall 2019 -- DeHon

Message

+ Data Parallelism easy basis for
decomposition

» Data Parallel architectures can be
compact

— pack more computations onto a fixed-size
IC die

— OR perform computation in less area

Preclass 1

400 news articles

Count total occurrences of a string
How can we exploit data-level
parallelism on task?

How much parallelism can we exploit?
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Parallel Decomposition

n ESE53;

Data Parallel

Data-level parallelism can serve as an
organizing principle for parallel task
decomposition

Run computation on independent data
in parallel

2 Fall 2019 -- DeHon




Exploit

» Can exploit with
— Threads
— Pipeline Parallelism
— Instruction-level Parallelism
— Fine-grained Data-Level Parallelism

Performance Benefit

Ideally linear in number of processors
(resources)

* Resource Bound:
oTgp = (TsingIeXNdata ) P

* Tsinge = Latency on single data item
N po =ma (TsinglerNdata /' P)

Penn ESE532 Fall 2019 -- DeHon

SPMD

Single Program Multiple Data

* Only need to write code once
* Get to use many times

Preclass 2
Common Examples

* What are common examples of DLP?
— Simulation
— Numerical Linear Algebra
— Signal or Image Processing
—Image Processing
— Optimization
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Hardware Architectures

Idea

+ If we’re going to perform the same
operations on different data,
exploit that to reduce area, energy

» Reduced area means can have more
computation on a fixed-size die.
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SIMD

* Single Instruction Multiple Data

Shared Instruction

P

Ripple Carry Addition

» Can define logic for each bit, then

assemble:
— bit slice !
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Arithmetic Logic Unit (ALU)

* Observe:

—with small tweaks can get many functions
with basic adder components

Arithmetic and Logic Unit

"

ALU Functions

« A+B w/ Carry

* B-A

» Axor B (squash
carry)

* A*B (squash carry)

/A

D

Cout

Key observation: every ALU bit does the same thing
on different bits of the data word(s).
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ARM v7 Core

* ALU is Key
compute
operator in a
processor




W-bit ALU as SIMD

» Familiar idea
* A W-bit ALU (W=8, 16, 32, 64, ...) is SIMD
» Each bit of ALU works on separate bits

— Performing the same operation on it
« Trivial to see bitwise AND, OR, XOR
* Also true for ADD (each bit performing Full Adder)

« Share one instruction across all ALU bits

Bit7 Bit2 Bit1 Bit0

Instruction

; carry

9
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Penn ES

ALU Bit Slice T

; carry

Instruction
20
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Register File

* Small Memory
Write

* Usually with multiple Data
ports *

— Ability to perform Write Addr [
multiple reads and Read Addr2 ——
writes simultaneously Read Addr1 — "1

* Small + +

. Read Read
— To make it fast (small Data1 Data 2
memories fast)

— Multiple ports are
expensive
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Preclass 4

e Number in 108

- W=16

- W=128
» Perfect Pack Ratio?
e Why?

e Area W=167
e Area W=1287

{11111 | ALU bit slice
128 x 32

Instruction o0
Memory [

[
|:| 32 entry Register File

./

W-bit wide datapath 22

To Scale Comparison
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» W for single

Preclass 4

* Compare W=128

datapath in 108? perfect pack ratio?

» Perfect 16b pack

ratio?

—
128 x 32

Instruction o0
Memory [

| ALU bit slice

[
|:| 32 entry Register File

./

W-bit wide datapath 24




To Scale W=9088
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To Scale W=1024
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Preclass 6
* What do we get when add 65280 to 257

—32b unsigned add?
—16b unsigned add?
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ALU vs. SIMD ?

* What's different between
—128b wide ALU

— SIMD datapath supporting eight 16b ALU
operations

28
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Segmented Datapath

» Relatively easy (few additional gates) to
convert a wide datapath into one
supporting a set of smaller operations

— Just need to squash the carry at points

Bit7 Bit2 Bit1 Bit0

29
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Segmented Datapath

» Relatively easy (few additional gates) to
convert a wide datapath into one
supporting a set of smaller operations
— Just need to squash the carry at points

» But need to keep instructions
(description) small
— So typically have limited, homogeneous

widths supported
30
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Segmented 128b Datapath

* 1x128b, 2x64b, 4x32b, 8x16b

+ Ideally, pack into vector lanes

* Resource Bound: Tyecior = Nop/VL
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16b ALU blocks

Terminology: Vector Lane

» Each of the separate segments called a
Vector Lane

» For 16b data, this provides 8 vector lanes
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Preclass 5:
Vector Length

* May not match physical hardware length
* What happens when

— Vector length > Vector Lanes?

— Vector length < Vector Lanes?

— Vector length % (Vector Lanes) !=0
* E.g. vector length 20, for 8 hdw operators

34
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Performance

* Resource Bound
Tvector = CeIl(Nop/VL)* Teycle

1 ‘ 1 1 ‘ 1 1 1 ‘ r "
n

sau I [ I I
Shared Instruction ) I I I I | | I 16b ALU blocks
Sogreni 16
Sopment 2
p—
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Preclass 3:
Opportunity

* Don’t need 64b variables for lots of
things
* Natural data sizes?
— Audio samples?
— Input from A/D?
—Video Pixels?

—X, Y coordinates for 4K x 4K image?

36
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Vector Computation

» Easy to map to SIMD flow if can
express computation as operation on
vectors
— Vector Add

— Vector Multiply
— Dot Product

37

Concepts

38
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Terminology: Scalar

» Simple: non-vector

* When we have a vector unit controlled
by a normal (non-vector) processor core
often need to distinguish:

— Vector operations that are performed on
the vector unit

— Normal=non-vector=scalar operations
performed on the base processor core
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Vector Register File

* Need to be able to feed the SIMD
compute units

— Not be bottlenecked on data movement to
the SIMD ALU

* Wide RF to supply
* With wide path to memory
1 1 §' 1

bbby bbb
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Point-wise Vector Operations

» Easy —just like wide-word operations
(now with segmentation)

]

wash

Shared Instruction
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Point-wise Vector Operations

+ ...but alignment matters.

« If not aligned, need to perform data
movement operations to get aligned
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Ideal

for (i=0;i<64;i=i++)
— c[i]=a[i]+b[i]

* No data dependencies

* Access every element

* Number of operations is a
multiple of number of vector lanes
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Skipping Elements?

» How does this work with datapath?

— Assume loaded a[0], a[1], ...a[63] and b[0],
b[1], ...b[63] into vector register file

for (i=0;i<64;i=i+2)

— cli/2]=ali]+bli]

44
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Stride

« Stride: the distance between vector
elements used

» for (i=0;i<64;i=i+2)
— c[i/2]=a[i]+bli]

» Accessing data with stride=2

45
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Load/Store

« Strided load/stores

— Some architectures will provide strided
memory access that compact when read
into register file

* Scatter/gather

— Some architectures will provide memory
operations to grab data from different
places to construct a dense vector
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Neon

ARM Vector Accelerator on Zynq

47
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Programmable SoC

Xilinx

Zynq
TRM

(p27)
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UG1085

UltraScale




APU MPcore

Neon Vector

» 128b wide register file, 16 registers
» Support

— 2x64b

—4x32b (also Single-Precision Float)

—8x16b
—16x8b
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Sample Instructions
* VADD - basic vector
* VCEQ - compare equal
— Sets to all Os or 1s, useful for masking
* VMIN - avoid using if's
* VMLA — accumulating multiply
» VPADAL — maybe useful for reduce
— Vector pair-wise add
» VEXT - for “shifting” vector alignment
* VLDn — deinterleaving load .
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Neon Notes

» Didn’t see
— Vector-wide reduce operation

» Do need to think about operations being
pipelined within lanes

52
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ARM Cortex A53
(similar to A-7 Pipeline)

2-issue
In-order
8-stage pipe

Writeback

Integer

Lowest Decode Issue Floating-Point / NEON

Dual Issue

Operati

Load/Store

Queue

Figure 1 Cortex-A7 Pipeline

https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/3

htps: i ‘gadgets/2011/10/arms-new-cortex-a7-is-tailor-made-for-android-superphones/
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Big Ideas

» Data Parallelism easy basis for
decomposition

» Data Parallel architectures can be
compact — pack more computations
onto a chip
— SIMD, Pipelined
— Benefit by sharing (instructions)

— Performance can be brittle
+ Drop from peak as mismatch
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Admin

» SDSoC available on Linux machines
— See piazza

» Reading for Day 7 online

HW3 due Friday

« HW4 out
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