ESE532: System-on-a-Chip Architecture

Day 6: September 18, 2019
Data-Level Parallelism

Penn ESE532 Fall 2019 -- DeHon

Today

Data-level Parallelism

- · For Parallel Decomposition
- Architectures
- · Concepts
- NEON

Penn ESE532 Fall 2019 -- DeHon

2

Message

- Data Parallelism easy basis for decomposition
- Data Parallel architectures can be compact
 - pack more computations onto a fixed-size IC die
 - OR perform computation in less area

Penn ESE532 Fall 2019 -- DeHon

3

Preclass 1

- · 400 news articles
- · Count total occurrences of a string
- How can we exploit data-level parallelism on task?
- How much parallelism can we exploit?

Penn ESE532 Fall 2019 -- DeHon

4

Parallel Decomposition

enn ESE532 Fall 2019 -- DeHon

5

Data Parallel

- Data-level parallelism can serve as an organizing principle for parallel task decomposition
- Run computation on independent data in parallel

Penn ESE532 Fall 2019 -- DeHon

Exploit

- Can exploit with
 - Threads
 - Pipeline Parallelism
 - Instruction-level Parallelism
 - Fine-grained Data-Level Parallelism

Penn ESE532 Fall 2019 -- DeHon

-

Performance Benefit

- Ideally linear in number of processors (resources)
- · Resource Bound:

$$\circ T_{dp} = (T_{single} \times N_{data})/P$$

- T_{single} = Latency on single data item
- $T_{dp} = max(T_{single}, N_{data} / P)$

0

SPMD

Single Program Multiple Data

- · Only need to write code once
- · Get to use many times

Penn ESE532 Fall 2019 -- DeHon

9

Preclass 2 Common Examples

- What are common examples of DLP?
 - Simulation
 - Numerical Linear Algebra
 - Signal or Image Processing
 - Image Processing
 - Optimization

Penn ESE532 Fall 2019 -- DeHon

10

Hardware Architectures

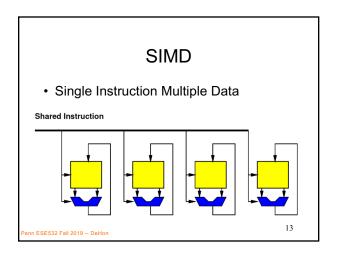
enn ESE532 Fall 2019 -- DeHon

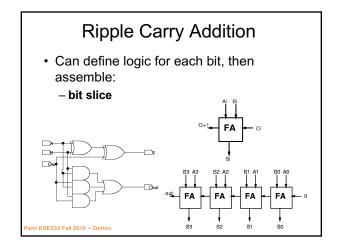
11

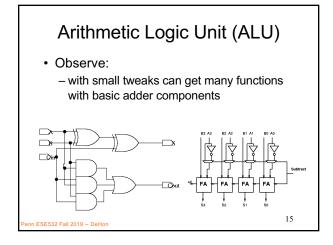
Idea

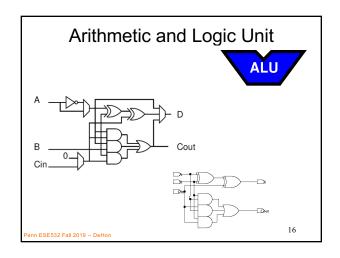
- If we're going to perform the same operations on different data, exploit that to reduce area, energy
- Reduced area means can have more computation on a fixed-size die.

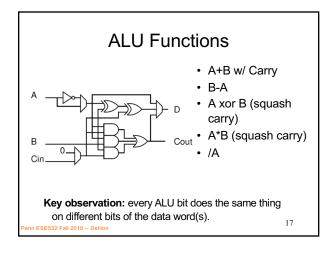
Penn ESE532 Fall 2019 -- DeHon

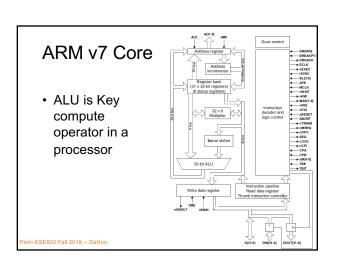




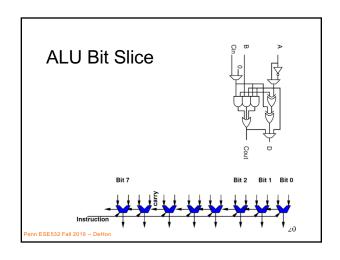


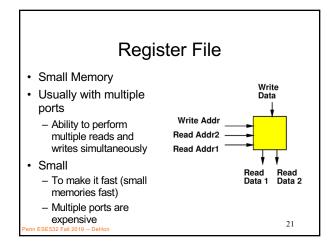


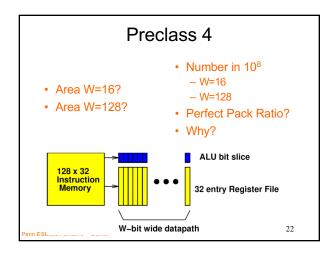


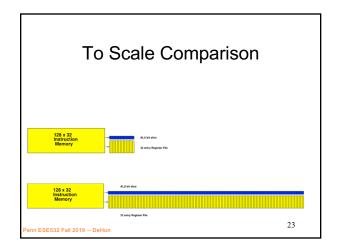


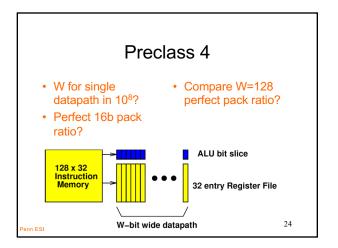
W-bit ALU as SIMD • Familiar idea • A W-bit ALU (W=8, 16, 32, 64, ...) is SIMD • Each bit of ALU works on separate bits - Performing the same operation on it • Trivial to see bitwise AND, OR, XOR • Also true for ADD (each bit performing Full Adder) • Share one instruction across all ALU bits Bit 7 Penn ESE532 Fall 2019 - DeHon

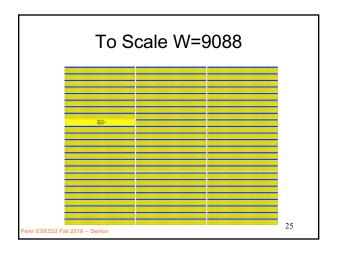












Preclass 6

- What do we get when add 65280 to 257
 - 32b unsigned add?
 - 16b unsigned add?

27

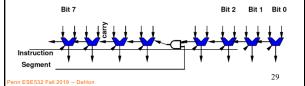
ALU vs. SIMD?

- · What's different between
 - 128b wide ALU
 - SIMD datapath supporting eight 16b ALU operations

28

Segmented Datapath

- · Relatively easy (few additional gates) to convert a wide datapath into one supporting a set of smaller operations
 - Just need to squash the carry at points



· But need to keep instructions

(description) small

- So typically have limited, homogeneous widths supported

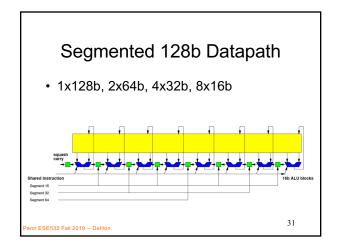
Segmented Datapath

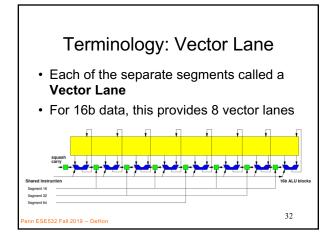
· Relatively easy (few additional gates) to

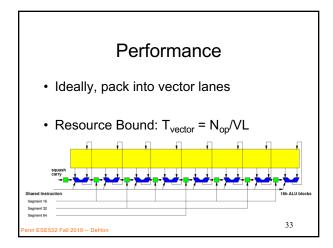
supporting a set of smaller operations

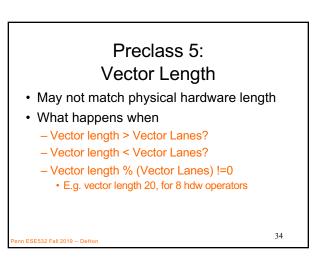
- Just need to squash the carry at points

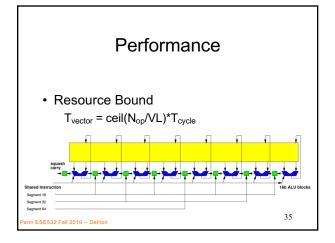
convert a wide datapath into one











Preclass 3:
Opportunity

• Don't need 64b variables for lots of things

• Natural data sizes?

- Audio samples?

- Input from A/D?

- Video Pixels?

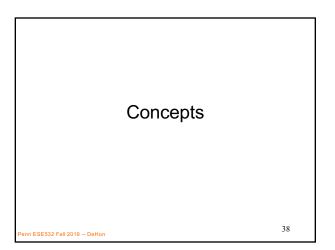
- X, Y coordinates for 4K x 4K image?

Vector Computation

- Easy to map to SIMD flow if can express computation as operation on vectors
 - Vector Add
 - Vector Multiply
 - Dot Product

Penn ESE532 Fall 2019 -- DeHon

37



Terminology: Scalar

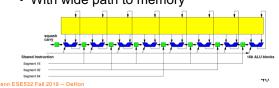
- · Simple: non-vector
- When we have a vector unit controlled by a normal (non-vector) processor core often need to distinguish:
 - Vector operations that are performed on the vector unit
 - Normal=non-vector=scalar operations performed on the base processor core

Penn ESE532 Fall 2019 -- DeHon

39

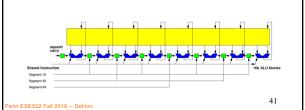
Vector Register File

- Need to be able to feed the SIMD compute units
 - Not be bottlenecked on data movement to the SIMD ALU
- · Wide RF to supply
- · With wide path to memory



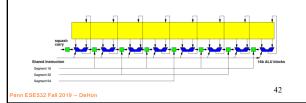
Point-wise Vector Operations

 Easy – just like wide-word operations (now with segmentation)



Point-wise Vector Operations

- ...but alignment matters.
- If not aligned, need to perform data movement operations to get aligned



Ideal

- for (i=0;i<64;i=i++)c[i]=a[i]+b[i]
- · No data dependencies
- · Access every element
- Number of operations is a multiple of number of vector lanes

Penn ESE532 Fall 2019 -- DeHon

43

Skipping Elements?

- How does this work with datapath?
 - Assume loaded a[0], a[1], ...a[63] and b[0], b[1], ...b[63] into vector register file
- for (i=0;i<64;i=i+2)
 - -c[i/2]=a[i]+b[i]

Penn ESE532 Fall 2019 -- DeHon

44

Stride

- Stride: the distance between vector elements used
- for (i=0;i<64;i=i+2)c[i/2]=a[i]+b[i]
- · Accessing data with stride=2

Penn ESE532 Fall 2019 -- DeHon

45

Load/Store

- · Strided load/stores
 - Some architectures will provide strided memory access that compact when read into register file
- · Scatter/gather
 - Some architectures will provide memory operations to grab data from different places to construct a dense vector

Penn ESE532 Fall 2019 -- DeHon

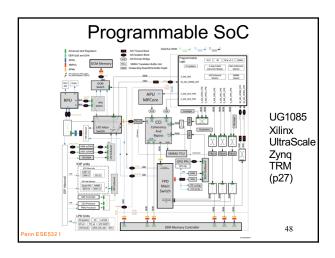
46

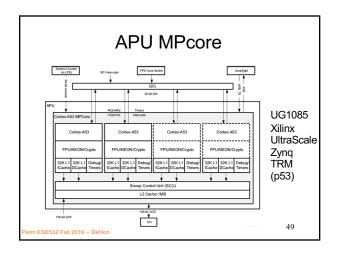
Neon

ARM Vector Accelerator on Zynq

enn ESE532 Fall 2019 -- DeHon

47





Neon Vector

- · 128b wide register file, 16 registers
- Support
 - -2x64b
 - 4x32b (also Single-Precision Float)
 - -8x16b
 - 16x8b

Penn ESE532 Fall 2019 -- DeHon

50

Sample Instructions

- VADD basic vector
- VCEQ compare equal
 Sets to all 0s or 1s, useful for masking
- VMIN avoid using if's
- VMLA accumulating multiply
- VPADAL maybe useful for reduce
 - Vector pair-wise add
- VEXT for "shifting" vector alignment
- VLDn deinterleaving load

Penn ESE532 Fall 2019 -- DeHon

51

Neon Notes

- · Didn't see
 - Vector-wide reduce operation
- Do need to think about operations being pipelined within lanes

Penn ESE532 Fall 2019 -- DeHon

52

ARM Cortex A53 (similar to A-7 Pipeline) 2-issue In-order 8-stage pipe Peating-Point / NEON Operating Point | Decode | Issue | Decode | Deco

Big Ideas

- Data Parallelism easy basis for decomposition
- Data Parallel architectures can be compact – pack more computations onto a chip
 - SIMD, Pipelined
 - Benefit by sharing (instructions)
 - Performance can be brittle
 - · Drop from peak as mismatch

on peak as mismater

Admin

- SDSoC available on Linux machines
 - See piazza
- Reading for Day 7 online
- HW3 due Friday
- HW4 out

enn ESE532 Fall 2019 -- DeHon