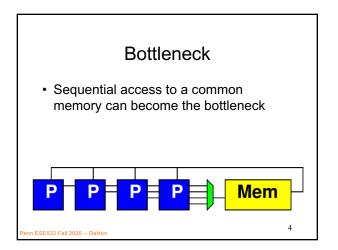
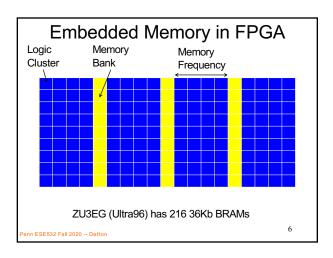

ESE532: System-on-a-Chip Architecture Day 12: October 14, 2020


Day 12: October 14, 2020 Data Movement (Interconnect, DMA)

Penn ESE532 Fall 2020 -- DeHon



Previously

- Want data in small memories
 Low latency, high bandwidth
- · FPGA has many memories all over fabric

5

DE ESSESSE FAIL 2020 De Han

Previously

- · Want data in small memories
 - Low latency, high bandwidth
- · FPGA has many memories all over fabric
- · Want C arrays in small memories
 - Partitioned so can perform enough reads (writes) in a cycle to avoid memory bottleneck

Penn ESE532 Fall 2020 -- DeHon

7

Today

- · Interconnect Infrastructure
- Peripherals (Part 2)
- Data Movement Threads (Part 3)
- DMA -- Direct Memory Access (Part 4)

enn ESE532 Fall 2020 -- DeHon

8

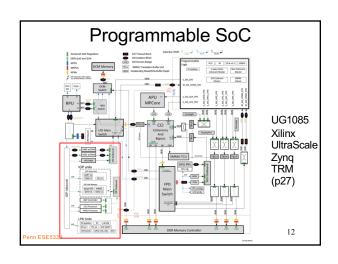
Message

- · Need to move data
- Shared interconnect to make physical connections
- Useful to move data as separate thread of control
 - Dedicating a processor is inefficient
 - Useful to have dedicated data-movement hardware: Direct Memory Access (DMA)

Penn ESE532 Fall 2020 -- DeHor

9

Memory and I/O Organization


- · Architecture contains
 - Large memories
 - · For density, necessary sharing
 - Small memories local to compute
 - · For high bandwidth, low latency, low energy
 - Peripherals for I/O
- Need to move data
 - Among memories and I/O
 - · Large to small and back
 - · Among small
- From Inputs, To Outputs

10

Term: Peripheral

- "On the edge (or perhiphery) of something"
- Peripheral device device used to put information onto or get information off of a computer
 - E.g.
 - Keyboard, mouse, modem, USB flash drive, ...

Penn ESE532 Fall 2020 -- DeHon

Memory and I/O Organization

- · Architecture contains
 - Large memories
 - · For density, necessary sharing
 - Small memories local to compute
 - · For high bandwidth, low latency, low energy
- Peripherals for I/O
- · Need to move data
 - Among memories and I/O
 - · Large to small and back
 - · Among small
- From Inputs, To Outputs

13

How move data?

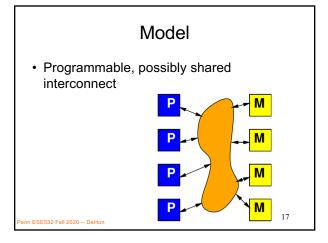
- · Abstractly, using stream links.
- Connect stream between producer and consumer.
- · Ideally: dedicated wires

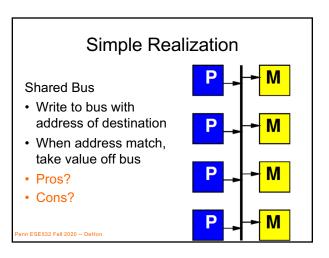
Penn ESE532 Fall 2020 -- DeHon

14

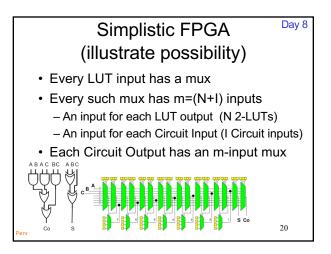
Dedicated Wires?

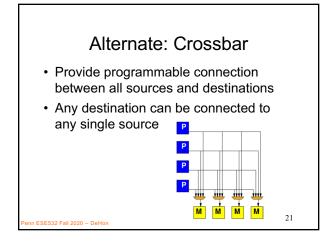
 What might prevent us from having dedicated wires between all communicating units?

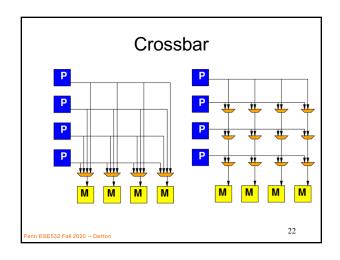

Penn ESE532 Fall 2020 -- DeHon

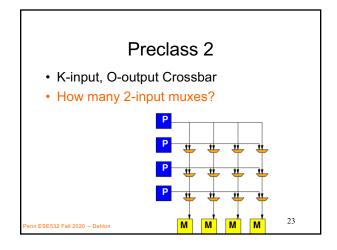

15

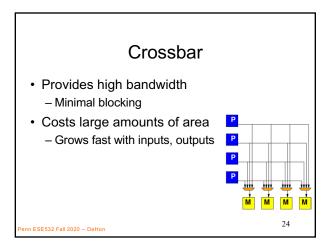
Making Connections

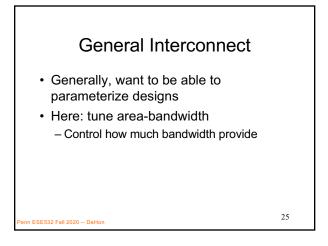

- · Cannot always be dedicated wires
 - Programmable
 - Wires take up area
 - Don't always have enough traffic to consume the bandwidth of point-to-point wire
 - May need to serialize use of resource
 - E.g. one memory read per cycle
 - Source or destination may be sequentialized on hardware

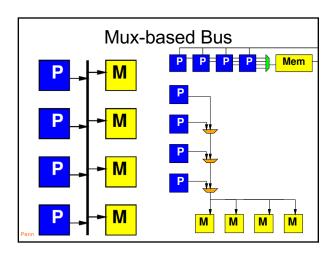

uwai e on

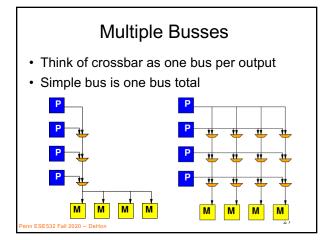


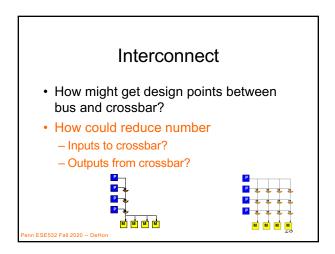


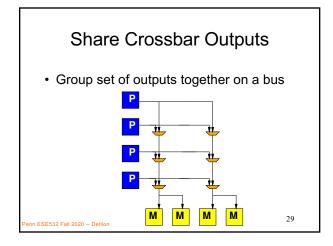

Alternate: Crossbar • Provide programmable connection between all sources and destinations • Any destination can be connected to any single source

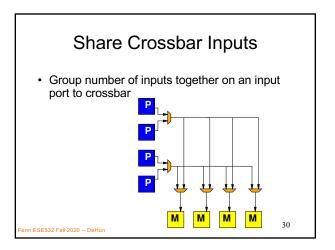


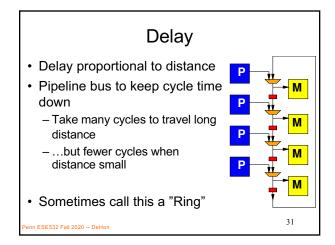


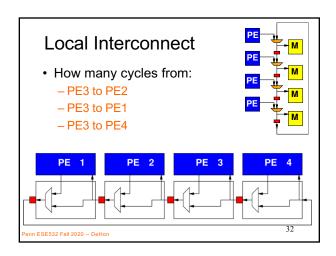


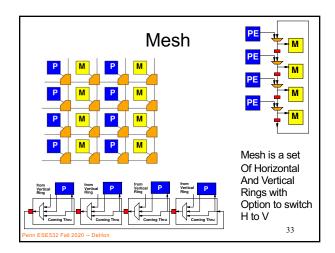


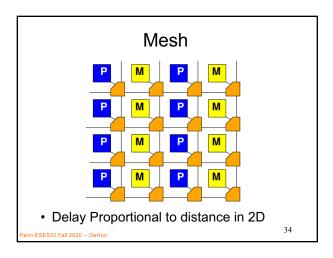


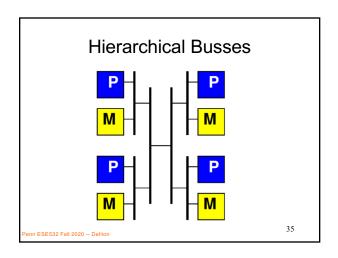


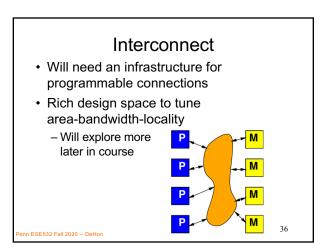


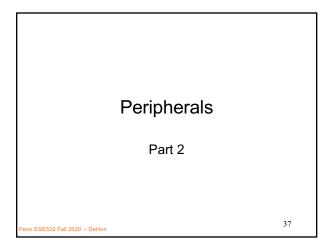


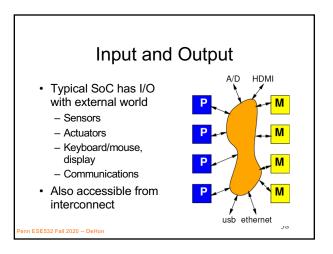


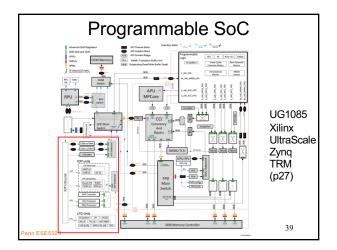


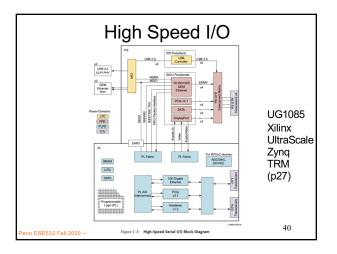


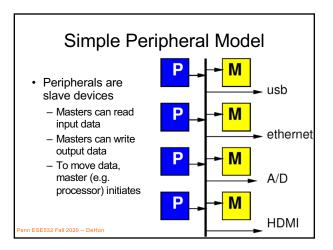


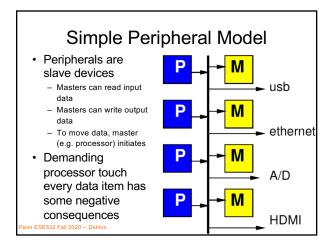








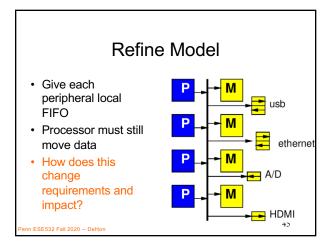



Masters and Slaves

- · Two kinds of entities on interconnect
- Master can initiate requests
 - E.g. **processor** that can perform a read or write
- Slaves can only respond to requests
 - E.g. **memory** that can return the read data from a read request

41

nn ESE532 Fall 2020 -- DeHon


Timing Demands

- · Must read each input before overwritten
- Must write each output within real-time window
- Must guarantee processor scheduled to service each I/O at appropriate frequency
- How many cycles between 32b input words for 1Gb/s network and 32b, 1GHz processor?
 - Consider input data shifted into register 1b per ns
 - Must read out 32b register before overwritten

enn ESE532 Fall 2020 -- DeHon

44

46

Long Latency Memory Operations

i ait o

532 Fall 2020 -- DeHon

Day 3

- · Large memories are slow
 - Latency increases with memory size
- Distant memories are high latency
 - Multiple clock-cycles to cross chip
 - Off-chip memories even higher latency

47

n ESEE22 Foll 2020 - Dollan

Day 3, Preclass 2

- 10 cycle latency to memory
- If must wait for data return, latency can degrade throughput
- 10 cycle latency + 10 op + (assorted)
 - More than 20 cycles / result

```
for(i=0;i<MAX;i++) {
  in=a[i]; // memory read
  out=f(in); // 10 cycle compute
  b[i]=out;
}</pre>
```

Preclass 3

 Throughput using 3 threads on 3 processors: P1, P2, P3?

```
P1: for(i=0;i<MAX;i++) Astream.write(a[i]);
P2: while(1) {Astream.read(aval); Bstream.write(f(aval));}
P3: for(i=0;i<MAX;i++) Bstream.read(b[i]);
```

Penn ESE532 Fall 2020 -- DeHon

49

Fetch (Write) Threads

- Potentially useful to move data in separate thread
- · Especially when
 - Long (potentially variable) latency to data source (memory)
- · Useful to split request/response

Penn ESE532 Fall 2020 -- DeHon

50

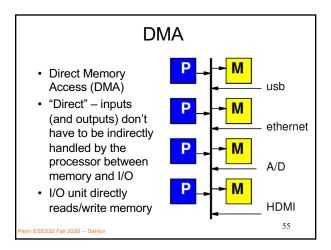
DMA Part 4

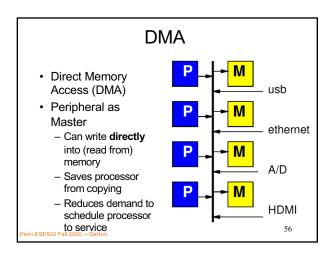
Direct Memory Access

Penn ESE532 Fall 2020 -- DeHon

51

Preclass 4a P1: for(i=0;i<MAX;i++) Astream.write(a[i]); WriteAstart NewAddr[24] WriteAstop FIFO_Has_Space FIFO_Has_Space FIFO_DataIn[32] int *p; P1: for(p=&(a[0]);p<&(a[MAX]);p++) Astream.write(*p);

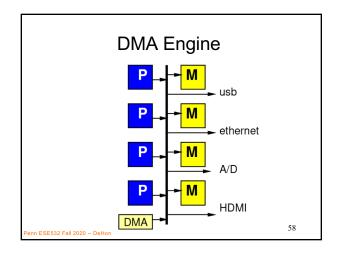

Preclass 4


- How much hardware?
 Counter bits?
 Registers?
 Comparators?
 How much hardware?
 WitteAstant NewAdd(24) WitteAstant N
 - Control Logic gates? (4cd)
- Compare to MicroBlaze
 - small RISC Processor optimized for Xilinx
- minimum config 630 6-LUTs

Penn ESE532 Fall 2020 -- Do

Observe

- Modest hardware can serve as data movement thread
 - Much less hardware than a processor
 - Offload work from processors
- Small hardware allow peripherals to be master devices on interconnect



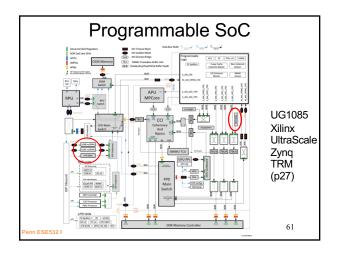
DMA Engine

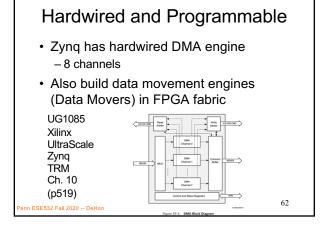
- · Data Movement Thread
 - Specialized Processor that moves data
- · Act independently
- · Implement data movement
- Can build to move data between memories (Slave devices)
- E.g., Implement P1, P3 in Preclass 3

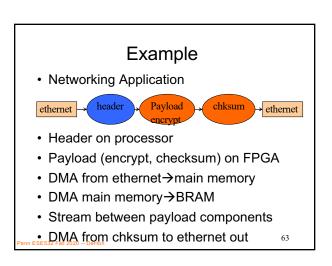
Penn ESE532 Fall 2020 -- DeHon

57

Programmable DMA Engine

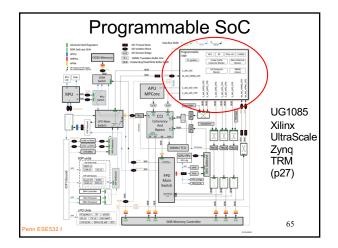

- · What copy from?
- · How much?
- · Where copy to?
- · Stride?
- · What size data?
- · Loop?
- · Transfer Rate?

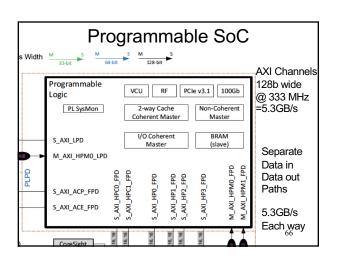

enn ESE532 Fall 2020 -- DeHoi

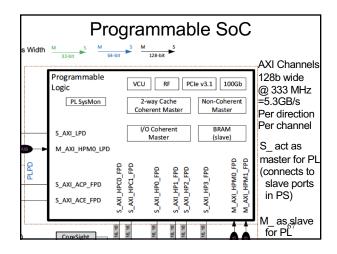

59

Multithreaded DMA Engine

- One copy task not necessarily saturate bandwidth of DMA Engine
- Share engine performing many transfers (channels)
- · Separate transfer state for each
 - Hence thread (or channel)
- · Swap among threads
 - Simplest: round-robin:







AXI nsible Int

- · Advanced eXtensible Interface
 - Originally developed by ARM
 - On-chip communication bus standard
 - Particular communication protocol
- Full AXI
 - Read/write operations with bursts
 - Burst = single address + length
 - Separate send/receive data channels
- AXI-S for streaming connections
- AXI-lite simpler, not burst

DMA in Vitis

- Vitis/OpenCL demands that we write code to perform DMA of data to and from accelerators in FPGA fabric
- · We will see specifics on Monday
- · Have some options to control
 - With pragmas
 - With choice of data and burst sizes
 - Explore HW6

Penn ESE532 Fall 2020 -- DeHon

68

Big Ideas

- · Need to move data
- Shared Interconnect to make physical connections – can tune area/bw/locality
- Useful to
 - move data as separate thread of control
 - Have dedicated data-movement hardware: DMA

enn ESE532 Fall 2020 -- DeHon

69

Admin

- Feedback
- · Hardware distribution
 - Thursday (for those not pick up yesterday)
- HW5
 - Due Friday, long build
- HW6
 - Out soon
 - Assign so at least one partner has Ultra96

enn ESE532 Fall 2020 -- DeHon