
1

Penn ESE532 Fall 2020 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 16: October 28, 2020
Deduplication and Compression Project

Penn ESE532 Fall 2020 -- DeHon 2

Today
• Motivation (part 1)
• Project (part 2)
• Content-Defined Chunking (part 3)
• Hashing / Deduplication (part 4)
• LZW Compression (part 5)

Message
• Can reduce data size by identifying and

reducing redundancy
• Can

– spend computation and data storage
– to reduce communication traffic

Penn ESE532 Fall 2020 -- DeHon 3

Problem
• Always want more

– Bandwidth
– Storage space

• Carry data with me (phone, laptop)
• Backup laptop, phone data

– Maybe over limited bandwidth links
• Never delete data
• Download movies, books, datasets
• Make most use of space, bw given

Penn ESE532 Fall 2020 -- DeHon 4

Opportunity

• Significant redundant content in our raw
data streams (data storage)

• More formally:
– Information content < raw data

• Reduce the data we need to send or
store by identifying redundancies

Penn ESE532 Fall 2020 -- DeHon 5

Example

• Two identical files
– Different parts of my file systems

• Don’t store separate copies
– Store one
– And the other says “same as the first file”

• e.g. keep a pointer

Penn ESE532 Fall 2020 -- DeHon 6

2

Why Identical?

• Eniac file system (common file server)
– Multiple students have copies of

assignment(s)
– Snapshots (.snapshot)

• Has copies of your directory an hour ago, days
ago, weeks ago

– …but most of that data hasn’t changed

Penn ESE532 Fall 2020 -- DeHon 7

Broadening

• History file systems
– snapshot, Apple Time Machine

• Version Control (git, svn)
• Manually keep copies
• Download different software release

versions
– With many common files

Penn ESE532 Fall 2020 -- DeHon 8

Cloud Data Storage
• E.g. Drop Box, Google Drive, Apple Cloud
• Saves data for large class of people

– Want to only store one copy of each
• Synchronize with local copy on phone/laptop

– Only want to send one copy on update
– Only want to send changes

• Data not already known on other side
• (or, send that data compactly by just naming it)

Penn ESE532 Fall 2020 -- DeHon 9

Functional Placement
• At file server or USB drive

– Deduplicate/compress data as stored
• In client (laptop, phone)

– Dedup/compress to send to server
• In data center network

– Dedup/compress data to send between server
• Network infrastructure

– Dedup/compress from central to regional server

Penn ESE532 Fall 2020 -- DeHon 10

Optimizing the Bottleneck

• Saving data (transmitted, stored)
• By spending compute cycles

– And storage database

• When communication (storage) is the
bottleneck
– We’re willing to spend computation to

better utilize the bottleneck resource
Penn ESE532 Fall 2020 -- DeHon 11

Project

Part 1

Penn ESE532 Fall 2020 -- DeHon 12

3

Project

• Perform deduplication/compression at
network speeds (1Gb/s)

• Use “chunks” instead of files
• Turn a raw/uncompressed data stream

into one that exploits
– Duplicate chunks
– Redundancies within chunks

Penn ESE532 Fall 2020 -- DeHon 13

Project Context

• File server input link from network
– Compress data before sending to disk
– (or USB link from computer, compress

before store to flash)

• Network link in data center or
infrastructure
– Compress data that goes over network

Penn ESE532 Fall 2020 -- DeHon 14

Project Task

Penn ESE532 Fall 2020 -- DeHon 15

Motivation

• Can we afford to simply compare every
incoming file with all the files we’ve
already sent?

Penn ESE532 Fall 2020 -- DeHon 16

Preclass 1

• How many comparisons per input byte?

Penn ESE532 Fall 2020 -- DeHon 17

Requirements?

• Can we afford to simply compare every
incoming file with all the files we’ve
already sent?

• Data coming in at 1 GB/s
• Processor (or datapath) running at 1GHz
• How many comparisons needed per

cycle with preclass 1 solution?
– Hint: how many ns per input byte? Cycles?

Penn ESE532 Fall 2020 -- DeHon 18

4

Alternate Strategy

• Is there something we can compute on
the input file that will let us
– Know if a file is definitely not equivalent

• So not worth checking every byte
– Find the duplicate directly?

Penn ESE532 Fall 2020 -- DeHon 19

Alternatives

• How about
– Look at size of file?
– Look at 10 characters at fixed spots in the

files?
• E.g. bytes 11, 23, 113, 947, 1168, ….

• Could do better?
– Could do something where changing any

single character might be detected?

Penn ESE532 Fall 2020 -- DeHon 20

Exploring Alternatives

• What if we xor’ed together every byte in

the file?

• What if we took sum of every word

(group of 4 bytes) in the file?

Penn ESE532 Fall 2020 -- DeHon 21

Fingerprint, checksum, digest
• Compute a function on all the bytes in

the file à digest
• Bins files into separate classes by the

digest
– Only need to check those

• As increase bits in digest
– Make likelihood of two files having same

digest smaller
• If can arrange for digests to essentially

be unique – like a fingerprint
Penn ESE532 Fall 2020 -- DeHon 22

Hash

• A finite digest (fixed number of bits)
computed on a potentially large
collection of data (like a file)

• Ideally uniformly random digests
– each hash value equally likely

• Use as building block for grouping and
matching

Penn ESE532 Fall 2020 -- DeHon 23

Refined Strategy

• Keep a map of hash digests to files on
the system

• On new file,
– Compute hash digest on file
– Only compare file contents against files

with the same hash
• If hash is perfect with 20b, how does

this reduce the number of files need to
compare?Penn ESE532 Fall 2020 -- DeHon 24

5

Hashing Impact

• With (perfectly distributed) k-bit hash

• "#$%&'()ℎ = ,-./012034
56

Penn ESE532 Fall 2020 -- DeHon 25

Part 3:
Content-Defined Chunking

Penn ESE532 Fall 2020 -- DeHon 26

Files or chunks?

• Why might files be the wrong granularity
for identifying duplicates?

Penn ESE532 Fall 2020 -- DeHon 27

Blocks

• We regularly cut files into fixed-sized
blocks
– Disk sectors or blocks
– inodes in File systems

• We could look for duplicates in blocks
• Why might fixed-sized blocks not be

right division for deduplication?

Penn ESE532 Fall 2020 -- DeHon 28

Preclass 2 Unique Blocks?

Penn ESE532 Fall 2020 -- DeHon 29

Preclass 3 Unique Chunks?

Penn ESE532 Fall 2020 -- DeHon 30

6

Preclass 2 and 3

• Why chunks able to do capture more
duplicates?

Penn ESE532 Fall 2020 -- DeHon 31

Common File Modifications

• Add a line of text
• Remove a line of text
• Fix a typo
• Rewrite a paragraph
• Trim or compose a video sequence

Penn ESE532 Fall 2020 -- DeHon 32

Content-Define Chunking

• Would like to re-align pieces around
unchanged/common sequences
– Around the content

• Break up larger thing (file) into pieces
based on features of content
– Hence ”content-defined”

Penn ESE532 Fall 2020 -- DeHon 33

Chunks

• Pieces of some larger file (data stream)

• Variable size

– Over a limited range

• Discretion in how formed / divided

Penn ESE532 Fall 2020 -- DeHon 34

Chunk Creation

• How do we identify chunks?

Penn ESE532 Fall 2020 -- DeHon 35

Hashes and Chunk Creation

• Compute a hash on a window of values
– Window: sequence of W-bytes
– Like window filter

Penn ESE532 Fall 2020 -- DeHon 36

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

7

Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter

• Scan window over the input

Penn ESE532 Fall 2020 -- DeHon 37

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

0x63

0x11

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter

• Scan window over the input
• When hash has some special value

(like 0 or 0x11)
– Declare a chunk boundary

Penn ESE532 Fall 2020 -- DeHon 38

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

0x63

0x11

Hashes as Chunk Cut Points
• What does this do?
• Guarantees that each chunk begins (or

ends) at some fixed hash
• For a particular substring that matches

the target hash
– Always occurs at beginning (or end) of

chunk
• If have a large body of repeated text

– Will synchronize cuts at the same points
based on the content

Penn ESE532 Fall 2020 -- DeHon 39

Chunk Size
• Assume hash is uniformly random
• The likelihood of each window having a

particular value is the same
• So, if hash has a range of N,

the probability of a particular window
having the magic “cut” value is 1/N

• …making the average chunk size N
• So, we engineer chunk size by selecting

the range of the hash we use
– E.g. 12b hash for 212 = 4KB chunksPenn ESE532 Fall 2020 -- DeHon 40

Chunking Design
• Raises questions

– How big should chunks be?
• Apply maximum and minimum size beyond

content definition?
– How big should hash window be?

• Discuss
– What forces drive larger chunks, smaller?

• How do large chunks help compression? Hurt?

Penn ESE532 Fall 2020 -- DeHon 41

Example Text

• Consider beginning of repeated block of text.
• This stuff has already been seen.
• But, we are only matching on something that

has a hash of zero.
• Maybe this line has a hash of zero.
• But, our repeated text is before and after the

magic window with the matched hash value.

Penn ESE532 Fall 2020 -- DeHon 42

8

Example Data Stream

Penn ESE532 Fall 2020 -- DeHon 43

Light blue
Identical.
Dark blue
Hash=0.

Example Data Stream

Penn ESE532 Fall 2020 -- DeHon 44

Chunk Size

• Large chunks
– Increase potential compression

• ChunkSize/ChunkAddressBits
– Decrease

• Probability of finding whole chunk
• Fraction of repeated content included

completely inside chunks

Penn ESE532 Fall 2020 -- DeHon 45

Rolling Hash
• A Windowed hash that can be computed

incrementally
• Hash(a[x+0],a[x+1],…a[x+W-1])=

G(Hash(a[x-1],a[x+0],…a[x+W-2]))
- F(a[x-1])+F(A[x+W-1])

• i.e., hash computation is associative
• (+,- used abstractly here, could be in some

other domain than modulo arithmetic)

Penn ESE532 Fall 2020 -- DeHon 46

Rolling Hash

• hash (gree) = 0x20+0x67+0x72+0x65+0x65
• hash (green) = 0x67+0x72+0x65+0x65+0x6e
• hash(green) = hash(gree)-0x20+0x6e

Penn ESE532 Fall 2020 -- DeHon 47

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

0x63

0x11

Rabin Fingerprinting

• Particular scheme for rolling hash due
to Michael Rabin based on polynomial
over a finite field

• Commonly used for this chunking
application

Penn ESE532 Fall 2020 -- DeHon 48

9

Content-Defined Chunking

• Compute rolling hash (Rabin
Fingerprint) on input stream

• At points where hash value goes to 0,
create a new chunk

Penn ESE532 Fall 2020 -- DeHon 49

Part 4:
Hashing Deduplication

Penn ESE532 Fall 2020 -- DeHon 50

Hashes for Equality

• We can also (separately) take the hash
signature of an entire chunk

• The longer we make the hash,
the lower the likelihood two different
chunks will have the same hash

• If hash is perfectly uniform,
– N-bit hash, two chunks have a 2-N chance

of having the same hash.

Penn ESE532 Fall 2020 -- DeHon 51

Deduplicate
• Compute chunk hash
• Use chunk hash to lookup known

chunks
– Data already have on disk
– Data already sent to destination, so

destination will know
• If lookup yields a chunk with same hash

– Check if actually equal (maybe)
• If chunks equal

– Send (or save) pointer to existing chunk
Penn ESE532 Fall 2020 -- DeHon 52

Engineering Hash

• 2GB DRAM on Ultra96.

• How many 1KB chunks on a 1TB disk?

• Potential hash values for 256b hash?

Penn ESE532 Fall 2020 -- DeHon 53

Engineering Hash

• 2GB DRAM on Ultra96.

• 1G = 230 1KB chunks on a 1TB disk.

• 256b hash has 2256 potential hashes

– Probably of same hash: 2-226

Penn ESE532 Fall 2020 -- DeHon 54

10

Deduplicate
• Compute chunk hash
• Use chunk hash to lookup known

chunks
– Data already have on disk
– Data already sent to destination, so

destination will know
• If lookup yields a chunk with same hash

– Check if actually equal (maybe)
• How large of a memory do you need to

hold the table of all 256b hash results?
• How relate to Ultra96 DRAM capacity?Penn ESE532 Fall 2020 -- DeHon 55

Deduplication Architecture

Penn ESE532 Fall 2020 -- DeHon 56

Associative Memory

• Maps from a key to a value
• Key not necessarily dense

– Contrast simple RAM

• Talk about options to implement next
week

Penn ESE532 Fall 2020 -- DeHon 57

Secure Hash

• We regularly use digest signatures to
identify if a file has been tampered with

• Again, hashes are same, mean data
might be the same

• For security, we would like additional
property
– not easy to make the anti-tamper signature

match

Penn ESE532 Fall 2020 -- DeHon 58

Cryptographic Hash

• One-way functions
• Easy to compute the hash
• Hard to invert

– Ideally, only way to get back to input data
is by brute force – try all possible inputs

• Key: someone cannot change the
content (add a backdoor to code) and
then change some further to get hash
signature to match original

Penn ESE532 Fall 2020 -- DeHon 59

SHA-256

• Standard secure hash with a 256b hash
digest signature

• Heavily analyzed
• Heavily used

– TLS, SSL, PGP, Bitcoin, …

Penn ESE532 Fall 2020 -- DeHon 60

11

Part 5:
LZW Compression

Penn ESE532 Fall 2020 -- DeHon 61

Preclass 4

• I AM S<2,3><5,4><0,4>

• Message?

Penn ESE532 Fall 2020 -- DeHon 62

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I A M S

Preclass 5, 6

• Bits in unencoded (decoded) message?
– Assume 8b char

• Bits for encoded message?
– Assume 9b for character

• 1 bit to say is a character, then 8b char
– And 9b for <x,y> pair

• 1 bit char, 4b for each of x and y

Penn ESE532 Fall 2020 -- DeHon 63

Idea

• Use data already sent as the dictionary
– Give short names to things in dictionary
– Don’t need to pre-arrange dictionary
– Adapt to common phrases/idioms in a

particular document

Penn ESE532 Fall 2020 -- DeHon 64

Encoding

• Greedy simplification
– Encode by successively selecting the

longest match between the head of the
remaining string to send and the current
window

Penn ESE532 Fall 2020 -- DeHon 65

Algorithm Concept

• While data to send
– Find largest match in window of data sent
– If length too small (length=1)

• Send character
– Else

• Send <x,y> = <match-pos,length>
– Add data encoded into sent window

Penn ESE532 Fall 2020 -- DeHon 66

12

Preclass 7

• How many comparisons per invocation?

Penn ESE532 Fall 2020 -- DeHon 67

Next Time

• See a clever way to reduce
comparisons to constant work per input
character (linear in data being
compressed)

Penn ESE532 Fall 2020 -- DeHon 68

Project Task

Penn ESE532 Fall 2020 -- DeHon 69

Big Ideas
• Can reduce data size by identifying and

reducing redundancy
• Can spend computation and data

storage to reduce communication traffic

Penn ESE532 Fall 2020 -- DeHon 70

Penn ESE532 Fall 2020 -- DeHon 71

Admin

• Feedback

• HW6 due Friday
• Project assignment out

• Reading for Monday online

• First project milestone due next Friday
– Including teaming
– Teams of 3

