
1

Penn ESE532 Fall 2020 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 4: September 16, 2020
Parallelism Overview

From Syllabus:
Preclass
Feedback
Google doc for Builds

(sign up for number now)
Penn ESE532 Fall 2020 -- DeHon

2

Today
• Compute Models (Part 1)

– How do we express and reason about
parallel execution freedom

• Types of Parallelism (Part 2)
– How can we slice up and think about

parallelism?
– How exploit parallelism

Message

• Many useful models for parallelism
– Help conceptualize

• One-size does not fill all
– Match to problem

Penn ESE532 Fall 2020 -- DeHon
3

Parallel Compute Models

Control Flow, Dataflow
Combining

Explicit, Implicit Parallelism

Penn ESE532 Fall 2020 -- DeHon
4

Penn ESE532 Fall 2020 -- DeHon
5

Sequential Control Flow

Control flow
• Program is a

sequence of
operations

• Operation reads
inputs and writes
outputs into common
store (memory)

• One operation runs at
a time
– defines successor

Model of correctness
is sequential
execution

Examples
C (Java, …)
Finite-State Machine
(FSM) / Finite
Automata (FA)

Parallelism can be explicit

• State which
operations occur on
a cycle

• Multiply, add for
quadratic equation

Penn ESE532 Fall 2020 -- DeHon
6

cycle mpy add
1 B,x
2 x,x (Bx)+C
3 A,x2

4 Ax2+(Bx+C)

2

Parallelism can be implicit

• Sequential
expression

• Infer data
dependencies

T1=x*x
T2=A*T1
T3=B*x
T4=T2+T3
Y=C+T4

• Or
Y=A*x*x+B*x+C

Penn ESE532 Fall 2020 -- DeHon
7

Implicit Parallelism

• d=(x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)

• What parallelism exists here?

Penn ESE532 Fall 2020 -- DeHon
8

Parallelism can be implicit

• Sequential
expression

• Infer data
dependencies

for (i=0;i<100;i++)

y[i]=A*x[i]*x[i]+B*x[i]+C

Why can these
operations be
performed in parallel?

Penn ESE532 Fall 2020 -- DeHon
9

Term: Operation

• Operation – logic computation to be
performed

Penn ESE532 Fall 2020 -- DeHon
10

Penn ESE532 Fall 2020 -- DeHon
11

Dataflow / Control Flow

Dataflow
• Program is a graph

of operations

• Operation
consumes tokens
and produces
tokens

• All operations run
concurrently

Control flow (e.g. C)
• Program is a

sequence of
operations

• Operation reads
inputs and writes
outputs into
common store

• One operation runs
at a time
– defines successor

Penn ESE532 Fall 2020 -- DeHon
12

Token

• Data value with presence indication
– May be conceptual

• Only exist in high-level model
• Not kept around at runtime

– Or may be physically represented
• One bit represents presence/absence of data

3

FIFO

• Hardware Block
• Outputs data in

order received
– First-In, First-Out

• Tell it when you are
providing data
– Write
– May choose not to

insert on a cycle
• Need to signal

• Tell it when you are
consuming data
– Read

• Tells you when it’s
empty and has no
data to provide

• Tells you when it’s
full and can hold
nothing else

Penn ESE532 Fall 2020 -- DeHon
13

FIFO

Empty

DataOut

Read

Write

DataIn

Full

What are data presence indicators here?

Token Examples?

• How ethernet know when a packet
shows up?
– Versus when no packets are arriving?

• How serial link know character present?
• How signal miss in processor data

cache and processor needs to wait for
data?

Penn ESE532 Fall 2020 -- DeHon
14

Penn ESE532 Fall 2020 -- DeHon
15

Operation

• Takes in one or more inputs

• Computes on the inputs
• Produces results

• Logically self-timed
– “Fires” only when input set present

– Signals availability of output

Penn ESE532 Fall 2020 -- DeHon
16

Penn ESE532 Fall 2020 -- DeHon
17

Dataflow Graph
• Represents

– computation sub-blocks
– linkage

• Abstractly
– controlled by data presence

Penn ESE532 Fall 2020 -- DeHon
18

Dataflow Graph Example

4

Sequential / FSM

• FSM is degenerate dataflow graph
where there is exactly one token

Penn ESE532 Fall 2020 -- DeHon
19

cycle mpy add next
S1 B,x x-->S2,

else S1

S2 x,x (Bx)+C S3
S3 A,x2 S4
S4 Ax2+(Bx+C) S1

S1

S2

S3

S4

x not
present?

Sequential / FSM

• FSM is degenerate dataflow graph
where there is exactly one token

Penn ESE532 Fall 2020 -- DeHon
20

cycle mpy add next
S1 B,x x-->S2,

else S1

S2 x,x (Bx)+C S3
S3 A,x2 S4
S4 Ax2+(Bx+C) S1

S1

S2

S3

S4

Communicating Threads

• Computation is a collection of
sequential/control-flow “threads”

• Threads may communicate
– Through dataflow I/O
– (Through shared variables)

• View as hybrid or generalization
• CSP – Communicating Sequential

Processes à canonical model example
Penn ESE532 Fall 2020 -- DeHon

21

Video Decode

Penn ESE532 Fall 2020 -- DeHon
22

Parse

Audio

Sync to
HDMI

Video

• Why might need to synchronize to send
to HDMI?

Compute Models

Penn ESE532 Fall 2020 -- DeHon
23

Value of Multiple Models

• When you have a big enough
hammer, everything looks like
a nail.

• Many stuck on single model
– Try to make all problems look like their nail

• Value to diversity / heterogeneity
– One size does not fit all

Penn ESE532 Fall 2020 -- DeHon
24

5

Types of Parallelism

Part 2

Penn ESE532 Fall 2020 -- DeHon
25

Types of Parallelism

• Data Level – Perform same
computation on different data items

• Thread or Task Level – Perform
separable (perhaps heterogeneous)
tasks independently

• Instruction Level – Within a single
sequential thread, perform multiple
operations on each cycle.

Penn ESE532 Fall 2020 -- DeHon
26

Pipeline Parallelism

• Pipeline – organize computation as a
spatial sequence of concurrent
operations
– Can introduce new inputs before finishing
– Instruction- or thread-level
– Use for data-level parallelism
– Can be directed graph

Penn ESE532 Fall 2020 -- DeHon
27

SWAP TO GOOGLE DOC

Penn ESE532 Fall 2020 -- DeHon
28

Sequential

• Single person build E
– Page for each person number

• Latency?
• Throughput?

Penn ESE532 Fall 2020 -- DeHon
29

Build 1

Data Parallel
• Everyone in class build own E
• Latency?
• Throughput?

• Ideal speedup?
• Resource Bound?

– 100 Es, 12 people
• When useful?

Penn ESE532 Fall 2020 -- DeHon
30

6

Data-Level Parallelism

• Data Level – Perform same
computation on different data items

• Resource Bound: Tdp = Tseq/P
• (with enough independent problems,

match our resource bound computation)

Penn ESE532 Fall 2020 -- DeHon
31

Thread Parallel

• Each person build indicated letter
• Latency?
• Throughput?
• Speedup over sequential build of 6

letters?

Penn ESE532 Fall 2020 -- DeHon
32

Build 2

Thread-Level Parallelism

• Thread or Task Level – Perform
separable (perhaps heterogeneous)
tasks independently

• Resource Bound: Ttp = Tseq/P
• Ttp=max(Tt1,Tt2,Tt3,…)

– Less speedup than ideal if not balanced
• Can produce a diversity of calculations

– Useful if have limited need for the same
calculation

Penn ESE532 Fall 2020 -- DeHon
33

Instruction-Level Parallelism

• Build single letter in lock step
• Groups of 3 (by number assigned)
• Resource Bound for 3 people building

9-brick letter?
• Announce steps from slide

– Stay in step with slides

Penn ESE532 Fall 2020 -- DeHon
34

Build 3

Group Communication

• Groups of 3
• Note who was

person 1 task
• 2, 3 will need to

pass completed
substructures

Penn ESE532 Fall 2020 -- DeHon
35

Step 0

Penn ESE532 Fall 2020 -- DeHon
36

7

Step 1

Penn ESE532 Fall 2020 -- DeHon
37

Step 2

Penn ESE532 Fall 2020 -- DeHon
38

Step 3

Penn ESE532 Fall 2020 -- DeHon
39

Instruction-Level Parallelism
(ILP)

• Latency?
• Throughput?

• Can reduce latency for single letter
• Resource Bound: Tlatency = Tseqlatency/P

– Remember critical path bound applies;
dependencies may limit

Penn ESE532 Fall 2020 -- DeHon
40

Instruction-Level Pipeline

• Each person adds one brick to build
• Resources? (people in pipeline?)
• Run pipeline once alone
• Latency? (brick-adds to build letter)
• Then run pipeline with 5 inputs
• Throughput? (letters/brick-add-time)

Penn ESE532 Fall 2020 -- DeHon
41

Build 4
Thread Graph

• How would we build with task level
parallelism?
– Tasks?
– Dependencies?

Penn ESE532 Fall 2020 -- DeHon
42

8

Types of Parallelism

• Data Level – Perform same
computation on different data items

• Thread or Task Level – Perform
separable (perhaps heterogeneous)
tasks independently

• Instruction Level – Within a single
sequential thread, perform multiple
operations on each cycle.

Penn ESE532 Fall 2020 -- DeHon
43

Pipeline Parallelism

• Pipeline – organize computation as a
spatial sequence of concurrent
operations
– Can introduce new inputs before finishing
– Instruction- or thread-level
– Use for data-level parallelism
– Can be directed graph

Penn ESE532 Fall 2020 -- DeHon
44

Penn ESE532 Fall 2020 -- DeHon
45

Big Ideas

• Many parallel compute models
– Sequential, Dataflow, CSP

• Find natural parallelism in problem
• Mix-and-match

Admin
• Reading Day 5 on web
• HW2 due Friday
• HW3? ….hopefully out…

Penn ESE532 Fall 2020 -- DeHon
46

