ESES32:
System-on-a-Chip Architecture

Day 5: September 21, 2020
Dataflow Process Model

Ly vid
&Penn

Message

Parallelism can be natural
Expression can be agnostic to substrate
— Abstract out implementation details

— Tolerate variable delays may arise in
implementation

Divide-and-conquer

— Start with coarse-grain streaming dataflow
Basis for performance optimization and
parallelism exploitation

enn ESE532 Fall 2020 -- DeHon

Today

Dataflow Process Model
Terms (part 1)

* Issues

Abstraction

» Performance Prospects (part 2)
» Basic Approach
* As time permits (part 3)

— Dataflow variants

— Motivations/demands for variants

Penn ESE532 Fall 2020 -- DeHon

P

nn ESE532 Fall 2020 -- DeHon

Programmable SoC

* Implementation Platform for innovation

This is what you target (avoid NRE)
Implementation
vehicle

Reminder

Goal:

exploit parallelism
on heterogeneous
PSoC to achieve
desired performance | /L
(energy) i

2 Fall 2020 -- DeHon

nn ESE

Term: Process
Abstraction of a processor
Looks like each process is running on a
separate processor
Has own state, including
— Program Counter (PC)
— Memory
— Input/output
May not actually run on processor
— Could be specialized hardware block
—May share a processor

532 Fall 2020°-- D

Thread

Has a separate locus of control (PC)

May share memory (contrast process)

— Run in common address space with other
threads

May not actually run on processor
— Could be specialized hardware block
— May share a processor

2020 -- DeHon

Day 4

Write Empty
Fl FO Dataln —/— FIFO /= DataOut

Full Read

Hardware Block
Outputs data in
order received

— First-In, First-Out
Tell it when you are
providing data

— Write

— May choose not to

« Tell it when you are
consuming data
— Read

* Tells you when it's
empty and has no
data to provide

* Tells you when it's
full and can hold

to improve resource utilization

Process

Processes (threads) allow expression of

independent control

Convenient for things that advance

independently

Process (thread) is the easiest way to

express some behaviors

— Easier than trying to describe as a single
process

Can be used for performance optimization

9

2020 -- DeHon

insert on a cycle nothing else
« Need to signal
I) 8
Penn ESE532 Fall 2020 -- DeHon
Preclass 2

Average time for TF, SG?

— 1 cycle 99% of time, 100 cycles 1% of time
Throughput no FIFO?

— Hint: what must wait on TF miss? SG miss?
Throughput with FIFO?

— How is FIFO changing?

What benefit from FIFO and brocesses?

FIFO
G @

n ESE532 Fall 2020 -- DeHon

Preclass 2

Independent probability of miss

— P, Pg

Concretely

—1 cycle in map

— 100 run function and put in map

If each runs independently (in isolation)
—T~= 1%(1-P)+P*100

If run together in lock step

— Either can stall: P=P#+P4-PiPy

= T~=1*(1-P)+(P)*100 ’

Penn ESE

Model (from Day 4)
Communicating Threads
Computation is a collection of
sequential/control-flow “threads”

Threads may communicate

— Through dataflow 1/O

— (Through shared variables)

View as hybrid or generalization

CSP — Communicating Sequential
Processes = canonical model exampleI2

532 Fall 2020 -- DeHon

Issues

+ Communication — how move data
between processes?
— What latency does this add?
— Throughput achievable?

* Synchronization — how define how
processes advance relative to each
other?

» Determinism — for the same inputs, do

we get the same outputs?
13

Penn ESE532 Fall 2020 -- DeHon

Today’s Stand

» Communication — FIFO-like channels
» Synchronization — dataflow with FIFOs
* Determinism — how to achieve

—...until you must give it up.

Penn ESE532 Fall 2020 -- DeHon

Dataflow Process Model

Multithread/CSP

Dataflow Sequential Control

Sequential Data Parallel
Control

with Allocation N
| Data-centric

Dynamic DF with Peek
|
Dynamic Stre?ming DF

Finite

Synchronous Dataflow (SDF)
| Automata

Single—Rate SDF

2. DeHon

Operation/Operator

» Operation — logical computation to be
performed
— A process that communicates through
dataflow inputs and outputs
» Operator — physical block that performs
an Operation
— E.g. processor, hardware block

Penn ESE532 Fall 2020 -- DeHon

Day 4
Dataflow / Control Flow

Dataflow Control flow (e.g. C)
* Programis agraph * Programisa
of operations sequence of
« Operation operations
consumes tokens * Operation reads

and produces inputs and writes
tokens outputs into

« All operations run common store
concurrently * One operation runs

— All processes atatime
— defines successor
17

Penn ESE532 Fall 2020 -- DeHon

Day 4
Token

+ Data value with presence indication
— May be conceptual
* Only exist in high-level model
* Not kept around at runtime
— Or may be physically represented
+ One bit represents presence/absence of data

Penn ESE532 Fall 2020 -- DeHon

Stream

* Logical abstraction of a persistent point-
to-point communication link between
operations (processes)

—Has a (single) source and sink
— Carries data presence / flow control

— Provides in-order (FIFO) delivery of data
from source to sink (producer to consumer)

stream

19
Penn ESE532 Fall 2020 -- DeHon

Variable Delay Source to Sink

* How would placement of source and
sink operator impact delay? compue

23
Penn ESE532 Fall 2020 -- DeHon

P
* How could sharing of interconnect
between source and sink impact delay?,
enn ESE532 Fall 2020 -- DeHon
Day 3

On-Chip Delay

+ Delay is proportional to distance travelled
+ Make a wire twice the length

— Takes twice the latency to traverse

— (can pipeline)
* Modern chips

—Run at 100s of MHz to GHz

— Take 10s of ns to cross the chip

Streams

» Captures communications structure
— Explicit producer->consumer link up

» Abstract communications
— Physical resources or implementation
— Delay from source to sink

» Contrast
— C: producer->consumer implicit through memory
— Verilog/VHDL: cycles visible in implementation
— (can add on top of either C or Verilog)

20
Penn ESE532 Fall 2020 -- DeHon

Communication Latency

* Once map to
multiple processors

* Need to move data
between processors

* That costs time

22
Penn ESE532 Fall 2020 - DeHon

Dataflow gives
Clock Independent Semantics

Interconnect

Takes n-clocks
Latency

24
Penn ESE532 Fall 2020 -- DeHon

Dataflow Process Network

* Collection of Operations
» Connected by Streams
» Communicating with Data Tokens

* (CSP restricted to stream
communication)

25

Dataflow Abstracts Timing

+ Doesn’t say

— on which cycle calculation occurs
* Does say

— What order operations occur in

— How data interacts
« i.e. which inputs get mixed together

* Permits
— Scheduling on different # and types of resources
— Operators with variable delay
- Variablﬁef:wdelay in interconnect 26

nn ESE532 Fall 2020 -- De

Dataflow Graphs
Parallel Performance Prospect

Part 2

27

P

Some Task Graphs

Windowed I Entropy

B (o)

C LG G
Motor 1

Control
Moter 2

28

nn ESE532 Fall 2020 -- DeHon

Synchronous Dataflow (SDF)
with fixed operators
* Particular, restricted form of dataflow
» Each operation
— Consumes a fixed number of input tokens

— Produces a fixed number of output tokens
— Operator performs fixed number of
operations (in fixed time)
— When full set of inputs are available
« Can produce output
— Can fire any (all) operations with inputs

oo o o @vailable at any point in time 29

SDF Operator

FFT
- 1024 inputs
« 1024 outputs 1024 1024
+ 10,240 multiplies +
+ 20,480 adds 30,720
* (or 30,720 primitive

operations)

Windowed I Entropy
G

ElY

Processor Model

+ Simple (for today’s lecture)
— Assume one primitive operation per cycle

» Could embelish

— Different time per operation type
« E.g. adds: 1 cycle, multiply: 3 cycles
— Multiple memories with different timings

Penn ESE532 Fall 2020 -- DeHon 31
Intel Knights Landing
Knights Landing Overview ™ 22

| 236 xa
meomam | meoam 138 | DMI ucoma mconam

| Chip: 36 Tiles interconnected by 2D Mesh

Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 B on-package; High BW.
" DDRA4: 6 channels @ 2400 up to 384GB
36 Tiles " 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
connected by = Node: 1-Socket only
20 Mesh

Fabric: Omni-Path on-package (not shown)
Interconnect

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corer
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

https://www.nextplatform.com/201 6/06/20/intel»knights-landing-yields-big-bang—bng-jump/
Penn ESE532 Fall 2020 -- DeHon [Intel, Micro 2016]

Time for Graph Iteration on
Processors

* Single processor T . = ENops,
i

» One processor per Operation (process)
O Teach = max(Nop+,Nopz,Nops,...)

* General

Tap = Max (Z c(l,i)XNopsi,Z c(2,i)XNops; ,z ¢(3,i)xNops;, >

i i i

c(x,y) — 1 if Processor x runs task y 32

Penn ESE532 Fall 2020 -- DeHon

GRVI/Phallanx

+ Puts 1680 RISC-V32b Integer cores
+ On XCVU9P FPGA

http://fpga.org/2017/01/12/grvi-phalanx-joins-the-kilocore-club/

Fig 6: A 400 GRVI Phalanx. 10x5 clusters of 8 PEs (KU040)

[Gray, FCCM 2016] 34

Penn ESE532 Fall 2020 -- DeHon

AWS a1-metal

35

Penn ESE532 Fall 2020 -- DeHon

Map to different processors

30,000 15,000 3,000 2,000

Windowed Entro
(o E52

* Map to (preclass 1)
— One processor performance?
— One process per processor performance?
— Two processors
* How?
* Performance?
— Bottleneck?

Penn ESE532 Fall 2020 -- DeHon

36

Refine Data Parallel

* If component is data parallel, can split
out parallel tasks

Select
Freq.
Windowed
e A

Freq.

37

Penn ESE532 Fall 2020 -- DeHon

Apple A13 Bionic

* 98mm2, 7nm
« 8.5 Billion Tr.
* iPhone 11 +
* 6 ARM cores

— 2 fast (2.6GHz)
— 4 low energy
* 4 custom GPUs
* Neural Engine
— 5 Trillion ops/s?

39

Penn ESE532 Fall 2020-- DeHon

Refine Pipeline

+ If operation internally pipelineable,
break out pipeline into separate tasks

6,000 6,000 6,000 6,000 6,000 2,000

) o 2
7,500 3,000

Performance with one processor per operation?

Achieve same performance with how many processors?
38

Penn ESE532 Fall 2020 -- DeHon

Zynq® UltraScale+™ MPSoCs: EG Block Diagram

Processing System
Appiication Processing Urit ‘Graphics Processing Unit High-Speed
ARM Mak™-400 MP2 Connectivity

SATA31

PGB 10120

FsomR

neral Connecti
G

Usa20
AN
TART
=
Guad 571 NOR
NAND
eI

Programmable Logic

| ‘

Pages © Copyright 2016-2017 Xinx £ XILINX > ALL PROGRAMMABLE
Penn ESE532 Fall 2020 - DeHon

Heterogeneous Processor

7,500 each
30,000

Windowed
FFT

» GPU perform 10 primitive FFT Ops per cycle
» Fast CPU can perform 2 ops/cycle
» Slow CPU 1 op/cycle

* Map: FFT to GPU, Select to 2 Fast CPUs,
quantize and Entropy each to own Slow CPU

» Cycles/graph iteration?

3,000 2,000

Select

Freq. Entropy
Encode

Freq.

41

Penn ESE532 Fall 2020 -- DeHon

Heterogeneous Processor

7,500 each

30,000

Windowed
FFT

3,000 2,000

Entropy
Encode

[|ePU_______FastCPU Slow CPU

Windowed FFT 3,000 15,000 30,000
Select Freq. 1 3,750 7,500
Select Freq. 2 3,750 7,500
Quantize 1,500 3,000
Entropy Encode 1,000 2,000

42
Penn ESE532 Fall 2020 -- DeHon

Heterogeneous Processor

7,500 each

30,000 3,000 2,000

Select
Freq. Entropy
Encode

Freq.

) Windowed
This marking__ FFT
Is for one

Slow processor

Not the 2 mentioned before.

Max(3000,3750,5000) = 5000

Penn ESE532 Fall 2020 -- DeHon

I Fast CPU
Windowed FFT (3,000 15,000 30,000
Select Freg. 1 7,500
Select Freq. 2 @ 7,500
Quantize 7500 3,000
Entropy Encode 1,000

Heterogeneous Processor

7,500 each

30,000

Windowed
FFT

3,000

2,000

Entropy
Encode

Select
Freq.

Windowed FFT 3,000 15,000 30,000
Select Freq. 1 3,750 7,500
Select Freqg. 2 3,750 7,500
Quantize 1,500 3,000
Entropy Encode 1,000 2,000

General case — find assignment with optimal timing us

Penn ESE532 Fall 2020 -- DeHon

Operations

» Can be implemented on different
operators with different characteristics
— Small or large processor
— Hardware unit
— Different levels of internal
+ Data-level parallelism
* Instruction-level parallelism
* Pipeline parallelism
* May itself be described as
— Dataflow process network, sequential,
... cocenr NArdware register transfer language 47

Heterogeneous Processor

7,500 each
30,000 3,000 2,000

Select
R Yo
. " ncode
This marki
Select
Is for one Freq.

Slow processor
Not the 2 mentioned before.

=Y Fast CPU |SlowcPU |
Windowed FFT (3,000 15,000 30,000
Select Freq. 1 (3750 7,500
Select Freq. 2 0 7,500
Entropy Encode % 2,000
Quantize 1,500

Max(3000,3750,4750,3000) = 4750

Penn ESE532 Fall 2020 -- DeHon

Custom Accelerator

« Dataflow Process doesn’t need to be
mapped to a processor

» Map FFT to custom datapath on FPGA
logic

— Read and produce one element per cycle
— 1024 cycles to process 1024-point FFT

1024 15,000 3,000 2,000

Windowed Entrop'
B (o)
46

Penn ESE532 Fall 2020 -- DeHon

Streams

« Stream: logical communication link
* How might we implement:

— Two threads running on a single processor
(sharing common memory)?

— Two processes running on different
processors on the same chip?

— Two processes running on different hosts
» E.g. one at Penn, one on Amazon cloud

48
Penn ESE532 Fall 2020 -- DeHon

Add Delay

» What does it do to computation Semantics (meaning)
if add an operation that copies inputs to
outputs with some latency? * Need to implement semantics

— Impact on function? —i.e. get same result as if computed as

— What is throughput impact when Identity indicated
operation has « But can implement any way we want
* Latency 10, throughput 1 value per cycle? — That preserves the semantics
* (reminder 1024 values between FFT and Select — Exploit freedom of implementation
30,000 Fred) o4 15,000 3,000 2,000

Windowed Sell Entropy
GO ERc

Penn ESE5 - DeHon

50
Penn ESE532 Fall 2020 -- DeHon

Approach (1)

+ Identify natural parallelism

] + Convert to streaming flow
Basic — Initially leave operations in software

Approach — Focus on correctness
+ Identify flow rates, computation per

operator, parallelism needed
* Refine operations

— Decompose further parallelism?

— E.g. data parallel split, ILP implementations
bonn ESE532 Fall 2020 - Doton 51 . — model potential hardware 52

SE532 Fall 2020 - De

Approach (2)

Refine coordination as necessary for
implementation

» Map operations and streams to Dataflow Variants
resources
— Provision hardware Part 3:
— Scheduling: Map operations to operators (coverage here depends on time
— Memories, interconnect available)

* Profile and tune
. Reflne

53
enn ESES! 20 -- DeHon

54
DeHon

Penn ESE532 Fall 2020

Turing Complete

» Can implement any computation
describable with a Turing Machine
— (theoretical model of computing by Alan
Turing)
» Turing Machine — captures our notion of
what is computable

— If it cannot be computed by a Turing
Machine, we don’t know how to compute it

55
enn ESE532 Fall 2020 -- DeHon

Synchronous Dataflow (SDF)
with fixed operators

« Particular, restricted form of dataflow
» Each operation
— Consumes a fixed number of input tokens
— Produces a fixed number of output tokens
— Operator performs fixed number of
operations (in fixed time)
—When full set of inputs are available
« Can produce output
— Can fire any (all) operations with inputs
s -, AVailable at any point in time 57

Penn ESE532 Fall 2020 -- DeHon

Multirate Synchronous Dataflow

» Rates can be different
— Allow lower frequency operations

— Communicates rates to tools
* Use in scheduling, provisioning

— Rates must be constant
+ Data independent

2 1

Penn

DataFlow (DF) Process
Network Roundup

SDF+fixed-delay
operators

SDF+variable Y N N
delay operators
DDF blocking Y N Y
DDF non- N N Y
blocking
- 5 5 56
ESES532 Fall 2020 -- DeHon

Penn ESE532 Fall 2020 -- DeHc

Synchronous Dataflow (SDF)

« Particular, restricted form of dataflow

» Each operation
— Consumes a fixed number of input tokens
— Produces a fixed number of output tokens

— (can take variable computation for operator)
— When full set of inputs are available
+ Can produce output

— Can fire any (all) operations with inputs

available at any point in time 58

Penr

ESE

Dynamic Dataflow

(Less) restricted form of dataflow

Each operation

— Conditionally consume input based on data value
— Conditionally produce output based on data value

— When full set of inputs are available
+ Can (optionally) produce output

— Can fire any (all) operations with data-specified
necessary inputs available at any point in time

60
532 Fall 2020 -- DeHon

10

Blocking

» Key to determinism: behavior doesn’t
depend on timing
— Cannot ask if a token is present

* If (not_empty(in))
— Out.put(3);
» Else

— Out.put(2);
61

Penn ESE532 Fall 2020 -- DeHon

Process Network Roundup

Model Deterministic Deterministic Turing
Result Timing Complete
Y Y N

SDF+fixed-delay

operators

SDF+variable Y N N
delay operators

DDF blocking Y N Y
DDF non- N N Y
blocking

62

Penn ESE532 Fall 2020 -- DeHon

Motivations and Demands
for Options

Time Permitting

63

Penn ESE532 Fall 2020 -- DeHon

Variable Delay Operators

* Why might a multiplier have variable
delay?
— Hint: consider shift-and-add multiply

* Why might square root have variable
delay?

* Why might memory lookup on a
processor have variable delay?

64

Penn ESE532 Fall 2020 -- DeHon

Variable Delay Operators

» Operators with Variable Delay
— Cached memory or computation
— Shift-and-add multiply
— lterative divide or square-root

65

Penn ESE532 Fall 2020 -- DeHon

GCD (Preclass 3)

* What is delay of)
GCD computation? ~ * While(al=b)
— t=max(a,b)-min(a,b)
— a=min(a,b)
— b=t
* return(a);

66

enn ESE532 Fall 2020 -- DeHon

11

Dynamic Rates?

» What is implication of static rates
—on compression?
— Filtering?
* (e.g. discard all spam packets)

67

Penn ESE532 Fall 2020 -- DeHon

Dynamic Rates?

« Static Rates limiting
— Compress/decompress
* Lossless
* Even Run-Length-Encoding
— Filtering
* Discard all packets from spamRus
— Anything data dependent

68

Penn ESE532 Fall 2020 -- DeHon

When non-blocking necessary?

* What are cases where we need the
ability to ask if a data item is present?

» Consider an IP packet router:

69

Penn ESE532 Fall 2020 -- DeHon

Non-Blocking

* Removed model restriction
— Can ask if token present
» Gained expressive power
— Can grab data as shows up
* Weaken our guarantees
— Possible to get non-deterministic behavior

70
Penn ESE532 Fall 2020 -- DeHon

Process Network Roundup

Deterministic Deterministic Turing
Result Timing Complete
SDF+fixed-delay Y Y N
operators

SDF+variable Y N N
delay operators

DDF blocking Y N Y

DDF non- N N Y
blocking

71

Penn ESE532 Fall 2020 -- DeHon

Big Ideas

» Capture gross parallel structure with
Process Network

» Use dataflow synchronization for
determinism
— Abstract out timing of implementations
— Give freedom of implementation

» Exploit freedom to refine mapping to
optimize performance

* Minimally use non-determinism as

Decessary 7

Penn ESE532 Fall 2

12

Admin

Remember feedback

— Today’s lecture and HW2
Reading for Day 6 on web
HW3 due Friday

— Implementing multiprocessor solutions on
homogeneous (ARM) processor cores

73

13

