Penn ESE532 Fall 2020 -- DeHon

ESES32:
System-on-a-Chip Architecture

Day 9: October 5, 2020
High-Level Synthesis (HLS)
C-to-gates
More accurate: C-for-gates

& Penn,

Today
» Motivation
» Spatial Computations from C
specification

— Simple Conditionals (Part 1)
— Functions (part 2)

— Globals

— Arrays (Part 3)

Message

+ C (or any programming language)
specifies a computation
» Can describe spatial computation

— A dataflow graph with physical operators
for each operation

» Underlying semantics is sequential
— Watch for unintended sequentialization

— Write C for spatial differently than you write
C for processors

2nn ESE532 Fall 2020 -- DeHon 3

Coding Accelerators

» Want to exploit FPGA logic on F1, Zynq
to accelerate computations
 Traditionally has meant develop
accelerators in
— Hardware Description Language (HDL)
« E.g. Verilog > see in CIS371, CIS501
— Directly in schematics

Course “Hypothesis”

+ C-to-gates synthesis mature enough to use
to specify hardware
— Leverage fact everyone knows C
* (must, at least, know C to develop embedded code)
— Avoid taking time to teach Verilog or VHDL
» Or making Verilog a pre-req.
— Focus on teaching how to craft hardware
» Using the C already know
« ...may require thinking about the C differently

Discussion [open]

* Is it obvious we can write C to describe
hardware?

* What parts of C translate naturally to
hardware?

* What parts of C might be problematic?

* What parts of hardware design might be
hard to describe in C?

Penn

ES

Three Perspectives

1. How express spatial/hardware
computations in C
— May want to avoid some constructs in C

2. How express computations
— Hopefully, equally accessible to
spatial and sequential implementations
3. Given C code: how could we implement
in spatial hardware

— Some corner cases and technicalities make
tricky
all 2020 -- DeHon

SE532 F [copy to board]

7

Advantage

» Use C for hardware and software

— Test out functionality entirely in software
» Debug code before put on hardware
—where harder to observe what's happening
« ...without spending time in place and route
—...which you soon see is slow...
— Explore hardware/software tradeoffs by
targeting same code to either hardware or
software

nn ESE532 Fall 2020 -- DeHon

Context

» C most useful for describing behavior of
operators

@ @ Differentiate @

 C alone doesn’t naturally capture task
parallelism

2nn ESE532 Fall 2020 -- DeHon

Preclass F

* Ready for preclass {?

10

Penn

ES

C Primitives

Arithmetic Operators
* Unary Minus (Negation) -a
+ Addition (Sum) a+b
» Subtraction (Difference) a-b
+ Multiplication (Product) a*b
+ Division (Quotient) alb
* Modulus (Remainder) a%b

Things might have a hardware operator for...

E532 Fall 2020 -- DeHon

1

Penn

ES

C Primitives
Bitwise Operators
Bitwise Left Shift a<<b

Bitwise Right Shift a>>b
+ Bitwise One's Complement ~a

« Bitwise AND a&b
+ Bitwise OR alb
» Bitwise XOR a’b

Things might have a hardware operator for...

E532 Fall 2020 -- DeHon

12

Expressions:
combine operators

e a*x+b a

C Primitives
Comparison Operators
* Less Than a<b
* LessThanorEqual To a<=b
» Greater Than a>b
» Greater Than or Equal To a>=b
* Not Equal To al=b
* Equal To a==
* Logical Negation la
* Logical AND a&&b
* Logical OR allb
Things might have a hardware operator for...
Penn ESE532 Fall 2020 -- DeHon 13
Expressions:
combine operators
* a*x+b
o a*x*x+b*x+c
* a*(xt+b)*x+c
* ((@a+10)*b < 100)
A connected set of operators
- Graph of operators
ESES5 H 15

X
b
A connected set of operators
- Graph of operators
ESES53 H 14
C Assignment
+ Basic assignment statement is:
Location = expression
o f=a*x+b a X
a*x b
f
£ 2 H 16

Straight-line code

+ a sequence of assignments
* What does this mean?
g=a*x;
h=b+g;
i=h*x;

j=itc;

Variable Reuse

+ Variables (locations) define flow
between computations
 Locations (variables) are reusable
t=a*x;
r=t*x;
t=b*x;
r=r+t;
r=r+c,

18

Variable Reuse

* Variables (locations) define flow between
computations

* Locations (variables) are reusable
t=a*x; t=a*x;
r=t*x; r=t*x;
t=b*x;
r=r+; r=r+;
r=r+c; r=r+c;

» Sequential assignment semantics tell us

which definition goes with which use.
— Use gets most recent preceding definition.

t=b*x;

Penn ESE532 Fall 2020 -- DeHon

19

Dataflow Height
« t=a*x; t=a*x;
r=t*x; r=t*x; a SN
t=b*x; t=b*x; b
r=r+t; r=r+t; °‘
r=r+c; r=r+c; °

* Height (delay) of DF
graph may be less than #
sequential instructions.

enn ESE532 Fall 2020 -- DeHon

Dataflow

» Can turn sequential
assignments into

X
dataflow graph through %, { b
def->use connections °‘
t=a*x; t=a*x;
r=t*x; r=t*x; °
t=b*x; t=b*x; o
r=r+t; r=r+t;
r=r+c; r=r+c; o
Penn ESE H 20

Lecture Checkpoint

int f(int a, int b)
. {
» Happy with ? int t, ¢, d;
— Straight-line code
—Variables a=a& (0x0f) ;
b=b& (0x0f) ;
t=b+3;
c=a"t;
t=a-2;
d=b"t;
return(d) ;

» Graph for preclass f

21

Straight Line Code

+ Cis fine for expressing straight-line
code and variables
— Has limited data types
 Address with tricks like masking
» Address with user-defined types

23

Penn ESE532 Fall 202

Optimizations can probably
expect compiler to do

+ Constant propagation: a=10; b=c[a];
» Copy propagation: a=b; c=a+d; = c=b+d;
» Constant folding: c[10*10+4]; > ¢[104];
+ Identity Simplification: c=1*a+0; > c=a;
+ Strength Reduction: c=b*2; > c=b<<1;
» Dead code elimination
+ Common Subexpression Elimination:
— C[x*100+y]=A[x*100+y]+B[x*100+y]
— t=x*100+y; CIt]=A[t]+BIt];
» Operator sizing: for (i=0; i<100; i++) b[i]=(a&0xff+i); 9

Conditionals

» What can we do for simple
conditionals?

if (a<b)
res=b-a

Else
res=a-b

Simple Conditionals

if (a>b) b (ored Care)
c=b*c;
else e
c=a’c;
C
Penn ESESS2 F H 27

Simple Control Flow

If (cond) {... }else{...}

» Assignments become conditional

In simplest cases (no memory ops),
can treat as dataflow node

26

Simple Conditionals

@D b

if (b>a)
v=b; 7

o

* If not assigned, value flows from before
assignment

Penn ESE532 Fall 2020 -- DeHon

28

Simple Conditionals

max=a; @

min=a;

if (a>b)
{min=b;
c=1;}

else
{max=b;
c=0;}

* May (re)define many values on each branch.

LT

C

Penn ESE532 Fall 2020 - DeHon 29

Preclass G

int g(int a, int b)
{
int t, ¢, d;
// same as above
a=a& (0x0f) ;
b=b& (0x0f) ;
t=b+3;
c=a"t;
t=a-2;
d=b"t;
//added (not in f)
if (a<b)
d=c;
// end added
return(d);

}

» Graph for preclass g
as mux-conversion?

Penn ESE532 Fall 2020 -- DeHon

o0

Part 2

Functions and Globals

Penn ESE532 Fall 2020 -- DeHon 31

Inline Transformation

* Inline a function
— Copy the body of function
— Into the point of call
— Replacing the function arguments
— With the arguments supplied in the call
int f(int a, int b)
return(sqgrt(a*atb*b)); for (1=0; 1<MAX; i++)

D[i]=sqrt(A[i]*A[i]

for(i=0; i<MAX;i++) +B[1]*B[1]);

D[i]=f(A[i],B[i]);

» What computation is this describing?

int f(int a, int b)
return(sqrt(a*atb*b));

for(i=0;i<MAX;i++)
D[i]=f(A[i],B[1]);

* What role does the function call play?

Penn ESE532 Fall 2020 -- DeHon

Function Call

32

int p(int a)

Penn ESE532 Fall 2020 -- DeHon 33

Inline

return(a*a+2*a-1);

for(i=0; i<MAX;i++)
D[i]=p(A[i])-P(B[1i]);

Functions provide descriptive convenience and compactness.
...but don’t need to force implementation.

for(i=0;i<MAX;i++)

D[i]=A[i]*A[i]+2*A[i]-1
- (B[i]*B[1]+2*B[i]-1);

Treat as data flow

 Implement function as call

an operation Poofix
» Send arguments as

input tokens Callee
» Get result back as

token 'f\/

galler
t

Functions provide o

potential division

between substrates? Assign different functions to

Penn ESES32 Fall 2020~ Deron different substrate (proc, fpga) 35

Penn ESE532 Fall 2020 -- DeHon 34
Shared Function
F1(A,B);
gfe"'?;‘ g?e“l?; z // Transpose(A,Aprime);
// matmul (Aprime,cl,B);
F2(B,C);
// matmul(B,c2,Cpre);
// normalize(Cpre,C);
gets Callee
result if (A<B)
f matmul(A.c1,B);
Post | Galler2 }
else
{
. matmul(D,c3,E);
Functions express shared operators. }
Penn ESE532 Fall 2020 - DeHon 36

Global Variables

int a=0;
int fl(int *A) {

* Variables not
for (int i=0;i<a;i++)

declared in a .

. sum+=A[1];
function return(sum); }
resolve to outer
context void £2(int *A) {

while (A[a]!=0);
at++;
}
f2(input);
isum=£f1(input);
Penn ESE532 Fall 2020 -- DeHon 38

Recursion?
int fib(int x) { + In general won’t work.
if ((x==0) || — Problem?
(x==1)) + Smart compiler might
return(l); be able to turn some
else cases into iterative
return(loop.
fib(x-1) + ...but don’t count on it.
fib(x-2)); — VivadoHLS will not
}
Penn ESE532 Fa DeHon 37
Treat as data flow
Functions provide RUN 0N Drocessor
potential division P Run on FPGA
between substrates. Caller
« Impact on global Prefix
variables?
int a=0; Callee
int £1l(int *A) {
for (int i=0;i<a;i++) {”_//
sum+=A[i];
return(sum); }
void £2(int *Aa) { gaII?r
while (A[a]!=0); 0s
a++; }
£2(input);
isum=f1(input);
Penn ESE532 Fall 2020 -- DeHon 39

Treat as data flow

Functions provide
Run on processor

potential division Run on FPGA
between substrates. Caller
« Impact on global Prefix
variables?
Callee

* Correct thing
— Reflect change in

variable between '/\—/

substrates Caller

« Evidence Vivado HLS Post
— Not synchronized with
host C on globals
Penn ESE532 Fall 2020 -- DeHon 40

Global Variables

int a=0;

« Globals generally ~ 1nt fl(int *a) {

considered bad

coding practice

— Obfuscate flow of
data even for human void f2(int *a) {

» Avoid Gobals while (A[a]!=0);
at+;

sum+=A[i];
return(sum); }

}
» With hardware, have '
extrareason avoid ~ £2(input);
isum=£f1(input);

Penn ESE532 Fall 2020 -- DeHon

for (int i=0;i<a;i++)

41

Global Variables
Bad Better

int fl(int *A, int len) {

for (int i=0;i<len;i++
sum+=A[i];

return(sum); }

int a=0;
int fl(int *A) {
for (int i=0;i<a;i++)
sumt=A[1i];
return(sum); }
int f2(int *A) {
void f2(int *A) { while (A[a]!=0);
while (A[a]!=0); lent+;
at+; return(len)

} }

f2(input); len=f2(input);
isum=f1(input); isum=f1(input,len);

Penn ESES32 Fall 2020 -- DeHon 42

Part 3

Loops and Arrays

Loops...

* From an express computation
standpoint, have several roles
— Compact code
— Unbounded computation

* From describe hardware
— Compact expression of parallel hardware
— Express pipelines
— Express area-time tradeoff

Penn ESE532 F. H 43
Loop Compact Expression
* What express?
— Sequential, fully unrolled, partially unrolled?
sum=0;
for (i=0;i<32;i++) {
sum+=(0-(b%2)) & a;
b=b>>1;
a=a<<1;
}
Penn ESE F. 45

Penn ESE532 Fall 2020 -- DeHon 44
Sequential
0 a b 0
sum=0; [
for (i=0;i<32;i++) { = =
sum+=(0-(b%2)) & a; (st [omtion]
b=b>>1;
a=a<<1;
}
Penn ESE532 F H 46

Spatial = fully unrolled

sum=0;

for (i=0;i<32;i++) {
sum+=(0-(b%2)) & a;
b=b>>1;
a=a<<1;

¥

Penn ESE532 Fall 2020 -- DeHon

47

Day 5
Stream

+ Logical abstraction of a persistent point-
to-point communication link between
operators
—Has a (single) source and sink
— Carries data presence / flow control

— Provides in-order (FIFO) delivery of data
from source to sink

stream

Penn ESE532 Fall 2020 - DeHon 48

Stream

* For the moment assume way to read and
write to streams:
— stream.read() — return next value on stream
— stream.write(val); put val onto stream

QMQ—
n ESE532 Fall 2020 -- DeHon 49

Penn

What describe?
int c=12;

while(true)

ES

E532 Fall 2020 -- DeHon 51

Unbounded, Pipelined
Operator

12

{
int aval=astream.read();
int bval=bstream.read();
int res=a*b+c;
resstream.write(res); res
}

Unbounded, Pipelined
Operator)
What C code describe?
12
res
P ESE H 50

With function call,
loop in function

sum=0;

int c=12; for (i=0;i<32;i++) {
. sum+=(0-(b%2)) & a;
while(true) beb>>1:
{ a=a<<1;
. }
int aval=astream.read();
int bval=bstream.read();
int res=multiply(a,b)+c;
resstream.write(res);
}
Penn ESE H 52

Compact Expression: Arrays

Useful to be able to refer to different
values (a large number of values) with
the same code.

Arrays + Loops: give us a way to do that

Useful:
—general expression
— hardware description
20 -- DeHon 53

Compact Expression:
Arrays+Logic

* Vector sum:
—c3=a3+b3; c2=a2+b2; c1=a1+b1; c0=a0+b0;
— for(i=0;i<3;i++) c[i]=a[i]+b[i];

» Chose small length to fit non-array on slide
— #define K 16
—for(i=0;i<K;i++) c[i]=a[i]+b[i];

Penn ESE532 Fall 2020 - DeHon 54

Compact Expression:
Arrays+Logic
» Dot Product:

—Y=a3*b3+a2*b2+a1*b1+a0*b0;
—Y=0; for(i=0;i<3;i++) Y+=a[i]*b][il;

Compact Expression:
Arrays+Logic

* Vector sum:
—c3=a3+b3; c2=a2+b2; c1=a1+b1; c0=a0+b0;
— for(i=0;i<3;i++) c[i]=a[i]+b[i];

* These array elements may be nodes in

dataflow graph, just like the variables we
saw for function f

— Express large dataflow graphs
- Make area-time choices for implementation

Penn ESE53 - DeHon

Foreshadowing:
C Array Challenge
» C programmers think of arrays as

memory (or memory as arrays)
—...and sometimes we will want to

Be careful understanding (and
expressing) arrays that don’t have to be
memories

— ...and treated with memory semantics
Penn ESE532 Fall 2020 -- DeHon 57

Loop Interpretations

* What does a loop describe?
1. Sequential behavior [when to execute]
2. Spatial construction [when create HW]
3. Data Parallelism [sameness of compute]
» We will want to use for all 3

» Sometimes need to help the compiler
understand which we want

58

Loop Bounds

+ Loops without constant bounds
while (sum+a[i]<100) {
sumt=a[i];
b[i]=a[i]>>2;
i++; }
* How many times loop execute?
» Typically forces sequentialization
— Cannot unroll into hardware

Loop Increment

+ Loops with variable increment also force
sequentialization
for (i=0;i<100;i+=£f(1i))
{ b[i]=a[i]; sum+=a[i]; }
* What are values of i for which evaluate
body?

60

10

Loop Interpretations

* What does a loop describe?
— Sequential behavior [when execute]
— Spatial construction [when create HW]
— Data Parallelism [sameness of compute]
* We will want to use for all 3
 C allows expressive loops

— Some expressiveness
* Not compatible with spatial hardware construction

Unroll

Vivado HLS has pragmas for unrolling

» UG901: Vivado HLS User’s Guide
— P180—229 for optimization and directives
#pragma HLS UNROLL factor=...

* Use to control area-time points
— Use of loop for spatial vs. temporal description

Penn ESE532 Fall 2020 -- DeHon 62

Arrays as Memory Banks

» Hardware expression: Sometimes we
will want to describe computations with
separate memory banks

int a[1024], b[l024],
c[10247];
for(i=0;i<1024;i++)
a[i]=bigmem[offset+i];
for (i=0;i<1024;i++)

c[il]=a[i]l*b[i];
Penn ESE532 Fall 2020 -- DeHon 04

Penn ESE532 Fall 2020 -- DeHon 61
Part 4
Arrays: Memory and 1/0
(time permitting)
Penn ESE532 F: H 63
Arrays as Memory Banks
+ If single memory has only one port
— Can perform only one memory operation
per cycle
—What llifa, b, el ol
all in bigmem? el
for (i=0;i<1024;i++)
cli]=a[i]*b[i];
Penn ESE532 Fall 2020 - DeHon 65

Penn ESE532 Fall 2020 -- DeHon

Physical Memory Port as
Limited Shared Resource

* Typically single memory port
— Must sequentialize on use of memory port

— Reason for banking
* Put in separate memories,
SO operations can o i

DRAM 1 port
BRAM 2 ports

11

Arrays as things to put in
Memory Banks

» Computational expression:
— sometimes it is useful to express computation
—then decide how to pack array state into

memory banks for different
» Hardware availability

. all cfl
* Area-Time tradeoffs ﬂ H

Penn ESE532 Fall 2020 - De

Arrays as Inputs and Outputs

» Computational Expression: arrays are
often a natural way of expression set of
inputs and outputs

int c=12;

: void op(int a[BLOCK], int
while(true)

b[BLOCK], int out[BLOCK]) {
{ for (i=0;i<BLOCK;i++)
int aval=astream.read(); {
int bval=bstream.read(); out[i]=a[i]*b[i]+c;
int res=a*b+c; }
resstream.write(res); }

}
Penn ESE532 Fall 2020 -- DeHon 68

Arrays as Local Memory

» Hardware/Computational expression:
natural way of describing local state
hist(int a[SIZE], Out[EVENTS]) {
int local[EVENTS];
for(i=0; i<EVENTS;i++)
local[i]=0;
for(i=0;i<SIZE;i++)

locall[]

local[a[i]]++; o
for (i=0; i<EVENTS; i++)

out[i]=local[i]; out

Fnrme‘}:?? Fall 2020 -- DeHon

69

Array Interpretations
* What does an array describe?

1. Compact expression [write less code]
Memory banks [where place data]
Things put in separate memory banks
Local memory [not need to be shared]

5. 110 [source and sink of data]
* We will want to use for all 5

oo

 C allows expressive use of arrays/memories

— Some expressiveness will inhibit efficient
hardware

Penn ESE532 Fall 2020 -- DeHon 70

Part 5

C Memory Model
(time permitting)

Penn ESE532 Fall 2020 -- DeHon

71

C Memory Model

* One big Imear. address New value
space of locations l

* Most recent definition to

location is value Addr
+ Sequential flow of

statements l

Current value

Penn ESES32 Fall 2020 -- DeHon 72

Challenge: C Memory Model

* One big linear address

) New value
space of locations 1
* Assumes all arrays live in
same memory Addr |
* Assumes arrays may
overlap? ’ 1
Current value
Penn ESE532 Fall 2020 -- DeHon 73

___memory banks, parallelism

Example

* Assume a, b live in same memory
* Placed in sequence as shown —
* What happens when

int a[l6];
0x078 a[14]
int b[16]; 0x07C |__a[15]
0x080 b[0
—Read from a[17] 0x084

0x088
— Read from b[-2]

+ Can inhibit separation into 0x0co

0x040 | a[0]

=

b[15

74

Memory Operation Challenge

* Memory is just a set of location

* But memory expressions in C can
refer to variable locations
— Does Ali], BJj] refer to same location?

—Alf(i)], Blg()1 ?

 Can inhibit banking, parallelism
— Or add expensive interconnect
Penn ESE532 Fall 2020 -- DeHon 75

C Memory/Pointer
Sequentialization

* Must preserve ordering of memory
operations

— A read cannot be moved before write to
memory which may redefine the location of
the read

« Conservative: any write to memory
« Sophisticated analysis may allow us to prove
independence of read and write

— Writes which may redefine the same
location cannot be reordered

enn ESE532 Fall 2020 -- DeHon

76

C Memory/Pointer
Sequentialization
» Must preserve ordering of memory
operations
— A read cannot be moved before write to

memory which may redefine the location of
the read

— Writes which may redefine the same location
cannot be reordered

* True for read/write to single array even if
know arrays isolated
— Does A[B]i]] refer to same location as A[C[i]]?
penn s D0EXPrESsion issue broader than C 77

Consequence

« Expressions and operations through
variables (whose address is never
taken) can be executed at any time
— Just preserve the dataflow

+ Memory assignments must execute in
strict order
— Ideally: partial order
— Conservatively: strict sequential order of C

78

13

More on Wednesday

« If time permits on Wednesday, more on
Sequentialization and Dependencies

79

Penn ESE532 Fall 2020 -- DeHon

Admin

* Midterm on Wednesday
—No lecture
— Can take any 2 hour block in 24 hour period
— See details on web
— Previous midterms on web
— Parts 1—3 today are relevant to exam
* HW5 due Friday 10/16
— Several long compiles
— Get started early

81

Big Ideas:

» C (any prog lang) specifies a computation
» Can describe spatial computation

— Has some capabilities that don’t make sense
in hardware

+ Shared memory pool, globals, recursion
— Watch for unintended sequentialization

* C for spatial is coded differently from C
for processor
—...but can still run on processor

» Good for leaf functions (operations)

ponn ese5m Limiting for full task

80

14

