
Midterm

! This is a preview of the draft version of the quiz

Started: Oct 6 at 10:27pm

Quiz Instruc!ons
Regulations: https://www.seas.upenn.edu/~ese532/fall2020/midterm_details.pdf

1 ptsQuestion 1

True

False

I certify that I have complied with the University of Pennsylvania’s Code of
Academic Integrity and the exam regulations
https://www.seas.upenn.edu/~ese532/fall2020/midterm_details.pdf
(https://www.seas.upenn.edu/~ese532/fall2020/midterm_details.pdf) in completing this
exam.

Consider the following code in answering the questions on this exam.

#include <stdint.h>
#define NUM_POINTS 1000
#define LOG2_NUM_POINTS 10
#define MAX_AREA (((uint64_t)1<<63)-1)
#define MAX_TIME (((uint64_t)1<<63)-1)
uint64_t min(uint64_t a, uint64_t b); // assume single instruction
uint64_t max(uint64_t a, uint64_t b); // assume single instruction
extern int **tp1set, **tp2set, **ap1set; // can hold negative numbers

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://www.seas.upenn.edu/~ese532/fall2020/midterm_details.pdf
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

extern int *dom;
extern uint64_t *ma, *mt;
uint64_t area_param(int arg, int num, int *a)
{
 uint64_t res=0;
 for (int i=0;i<num;i++) // loop F
 {
 int b=(arg & 0x01);
 arg=arg>>1;
 res+=b*a[i];
 }
 return(res);
}

uint64_t time_param(int arg, int num, int *t1, int *t2)
{
 uint64_t res=0;
 for (int i=0;i<num;i++) // loop G
 {
 int b=(arg & 0x01);
 arg=arg>>1;
 int tmp=(b*t1[i]+res);
 int t2i=t2[i];
 if (tmp==t2i)
 res=res+1;
 else
 res=max(t2i,res);
 }
 return(res);
}
void opt (int *tp1, int *tp2, int *ap1,
 int *non_dom_count_ptr, uint64_t *min_area_ptr, uint64_t *min_time_ptr)
{
 uint64_t a[NUM_POINTS];
 uint64_t t[NUM_POINTS];
 uint16_t dom[NUM_POINTS];

 uint64_t min_area=MAX_AREA;
 uint64_t min_time=MAX_TIME;

 uint64_t min_time=MAX_TIME;
 uint64_t non_dom_count=0;
 for (int i=0;i<NUM_POINTS;i++) // loop A
 {
 a[i]=area_param(i,LOG2_NUM_POINTS,ap1);
 t[i]=time_param(i,LOG2_NUM_POINTS,tp1,tp2);
 dom[i]=0;
 }
 for (int i=0;i<NUM_POINTS;i++) // loop B
 {
 min_area=min(a[i],min_area);
 min_time=min(t[i],min_area);
 }
 for (int i=0;i<NUM_POINTS;i++) // loop C
 for (int j=0;j<NUM_POINTS;j++) // loop D
 {
 if ((i!=j) && (a[j]<=a[i]) && (t[j]<=t[i])) dom[i]++;
 }
 for (int i=0;i<NUM_POINTS;i++) // loop E
 {
 if (dom[i]==0) non_dom_count++;
 }
 *non_dom_count_ptr=non_dom_count;
 *min_area_ptr=min_area;
 *min_time_ptr=min_time;
}

void multi_opt(int num)
{
 for (int i=0;i<num;i++) // loop H
 {
 opt(*tp1set,*tp2set,*ap1set,dom,ma,mt);
 dom++;
 ma++;
 tp1set++;
 tp2set++;
 ap1set++;
 }
}

}

We start with a baseline, single processor system as shown.

For simplicity throughout, we will treat non-memory indexing adds (subtracts
count as adds), compares, logical operations (&&, ||), min, max, and multplies
as the only compute operations. We'll assume the other operations take
negligible time or can be run in parallel (ILP) with the listed compute and
memory operations. (Some consequences: You may ignore loop and
conditional overheads in processor runtime estimates; you may ignore
computations in array indicies.)
Baseline processor can execute one multiply, compare, or add per cycle and
runs at 1 GHz.
Reads from and writes to the 1 MB main memory issue in one cycle, but
require 5 cycles of latency (including issue) to get a result; memory can supply
one read or write each cycle.
Reads from and writes to the 1 KB scratchpad memory take 1 cycle.
By default, all arrays live in the main memory and all array references
are to main memory.
Assume non-array variables live in registers.
Assume all additions are associative. Max and min are associative.
Assume comparisons, adds, min, max, and multiplies take 1 ns when
implemented in hardware accelerator, so fully pipelined accelerators also run at
1 GHz. A compare-mux operation can also be implemented in 1 ns.
A lookup in a small memory (1KB or small) can complete in 1ns.

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

10 pts

"HTML Editor

Question 2

Estimate the time in cycles to run opt() sequentially on the single-processor
baseline system described above. Show your work for partial credit
consideration.

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

 0 words
�

5 ptsQuestion 3

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

Loop A

Loop B

Loop C

Loop E

For the single-processor implementation, identify the bottleneck top-level loop.

5 pts

"HTML Editor

Question 4

What is the maximum Amdahl's Law speedup if we only accelerate the loop
identified in Question 3. (show work for partial credit consideration)

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

 0 words
�

10 ptsQuestion 5

LoopA-->LoopB

LoopB-->LoopC

LoopC-->Loop E

LoopE-->LoopA

LoopA-->LoopC

LoopA-->LoopE

Consider the coarse-grained dataflow graph for the top-level loops (A, B, C, E).
What precedence constraints exist among these loops (what producer->consumer
relationships exist).

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

LoopB-->LoopE

LoopC-->LoopB

LoopC-->LoopA

LoopE-->LoopB

LoopE-->LoopC

LoopB-->LoopA

7 ptsQuestion 6

Loop A

Loop B

Loop C

Loop D

Loop E

Loop F

Loop G

Identify the loops that are data parallel.

7 ptsQuestion 7

Explain why each loop above is data parallel or not.

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

"HTML Editor

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

 0 words
�

10 pts

"HTML Editor

Question 8

What is the Critical Path Latency Bound for the opt() function?

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

 0 words
�

5 pts

"HTML Editor

Question 9

Accelerate the code on the baseline system by using the scratchpad memory.

Show your revisions to the code. You only need to show the code you revised.

Hint: Since we're only asking for performance numbers to two significant figures,
don't waste time on speedups that will have an impact of less than 1% .

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

 0 words
�

5 pts

"HTML Editor

Question 10

Estimate the runtime and speedup for your revised code in Question 9.

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

 0 words
�

5 pts

"HTML Editor

Question 11

When pipelined, what is the minimum clock cycle time achievable for loop G in
time_param()?

[Do not unroll the loop. Think about pipelining the loop body to start one new
iteration of the body on each clock cycle.]

[Assume you can have small local memory banks to hold t1 and t2.]

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

 0 words
�

10 ptsQuestion 12

Upload

Design a pipeline for loop G in the time_param() calculation that achieves the
minimum cycle time (in ns) [as identified in the previous question].

[Continue to assume you can have small local memory banks to hold t1 and t2.]

Choose a File

10 ptsQuestion 13

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

"HTML Editor

Describe how to map the multi_opt() computation to the following heterogeneous
system to maximize the throughput of opt() calculations.

1 instance of 1 GHz, II=1 area_param (loop F) calculation pipeline
(assume have local memory banks for ap1 that can be used for each function
invocation)
1 instance of time_param (loop G) calculation pipeline (as you designed
above)
(assume have local memory banks for tp1, tp2 that can be used for each
function invocation)
2 single-issues, baseline processors (P), each running at 1 GHz.
8 Vector Processors (VP) with 8, 64b-wide vector lanes, each running at 1
GHz.
(for the loops that are data-parallel, you may assume computation achieves the
resource bound)
There is a shared, 512b wide path to main memory available to the hardware
pipelines and the Vector Processors. It can transfer one contiguous blocks of
512b into a Vector Register File (VRF) or hardware pipe each 1 ns cycle, but it
takes 5 cycles of latency before a fetched value is available in the VRF or pipe.
 The single-issue, baseline processors can only move 64b from the main
memory in cycle.

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

 0 words
�

5 pts

"HTML Editor

Question 14

Estimate the throughput of your mapped multi_opt() design in cycles (1 ns cycles)
per opt() calculation completion.

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

 0 words
�

5 pts

"HTML Editor

Question 15

Estimate the latency of the opt() calculation for your mapped multi_opt() design in
cycles (1 ns cycles) to compute each opt() result from when opt() first looks at its
ap1, tp1, tp2 inputs.

� � � � � � � � � � � � � � �

 � � 	
 # $ � � 12pt Paragraph

https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#
https://canvas.upenn.edu/courses/1528473/quizzes/2476253/take?preview=1#

Quiz saved at 10:28pm

 0 words
�

Submit Quiz

