
ESE532 Fall 2020

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2020 Midterm Solutions Wednesday, October 7

See exam as given for code, baseline system.

1. I certify that I have complied with the University of Pennsylvania’s Code of Aca-
demic Integrity and the exam regulations https://www.seas.upenn.edu/~ese532/

fall2020/midterm_details.pdf in completing this exam.

2. Estimate the time in cycles to run opt() sequentially on the single-processor baseline
system described above. Show your work for partial credit consideration.

Loop A ×1000 iterations of 240,000

area param (4 ops + 1 array memory×5)

× 10=90

time param (5 ops, 2 array memory

×5)×10=150

Loop B 1000 × (1 (min) +5 (read)) × 2 12,000

Loop C/D 1000×1000 iterations of 33,000,000

6 ops

5 reads ×5

1 write ×1

Loop E 1000 × (2 op + 5 (read)) 7,000

Total 33,259,000

(two significant figures) 33,000,000

3. For the single-processor implementation, identify the bottleneck top-level loop.

Loop C

4. What is the maximum Amdahl’s Law speedup if we only accelerate the loop identified
in Question 3. (show work for partial credit consideration)

33,259,000
259,000 ≈ 130

1



ESE532 Fall 2020

5. Consider the coarse-grained dataflow graph for the top-level loops (A, B, C, E). What
precedence constraints exist among these loops (what producer-¿consumer relation-
ships exist).

Loop A → Loop B, Loop A → Loop C, Loop C → Loop E

Loop A

Loop B Loop C

Loop E

2



ESE532 Fall 2020

6. Identify the loops that are data parallel.

7. Explain why each loop above is data parallel or not.

Which Data Explanation

Loop Parallel

Loop A T independent calculation of each area, time

Loop B reduce – min is an associative operation

Loop C T each dom[i] completely independent

Loop D reduce – only dependence is add 1; add is

an associative operation

Loop E reduce only dependent is add 1; add is an

associative operation

Loop F reduce – only dependence is sum into res;

add is an associative operation

Loop G F each iteration sequentially dependent on

res from previous iteration
We haven’t had a chance to talk in depth about reduce operations. The cleanest case
would be to identify them as their own category between data parallel and things that
require sequentialization. For the final, we’ll likely ask you to make that classification.
Here, we will accept a classification of either data parallel or not with an appropriate
explanation.

3



ESE532 Fall 2020

8. What is the Critical Path Latency Bound for the opt() function?

Loop F is a reduce operation, so can happend in 3 cycles for
the and, shift, and multiply plus 5 cycles for the read from a,
followed by log2(10) operations for the sum, or a total of 15 cycles
for area param.

Loop G is serialized on res with an II of 3 (See answer to problem
11). All of the t1, t2 reads (5 cycles), and, shift, and multiplies
(3 cycles for those) can occur in 8 cycles before the cyclic portion
of the loop. So, it takes 8+3× 10=38 cycles for time param.

Loop A max(area param (F),time param (G))

since data parallel

38

Loop B 5 (read)+log2(1000) (min reduce) 15

Loop C/D 5 (all reads)+ 1 (all compares)+ 2 (ands)

+ log2(1000) (sum reduce)

18

Loop E 5 (read)+1 (compare) + log2(1000) (sum

reduce)

16

Total 87
For this exam, we will accept sequentialization of reduces since we haven’t emphasized
it, but we will not on the final. Should identify data parallel things can run in parallel,
and that things like area params and time params can run in parallel with each other.

4



ESE532 Fall 2020

9. Accelerate the code on the baseline system by using the scratchpad memory.

Show your revisions to the code. You only need to show the code you revised.

Hint: Since we’re only asking for performance numbers to two significant figures, don’t
waste time on speedups that will have an impact of less than 1% .

Dominant time in Loop C/D so focus on that.

for (int i=0;i<NUM_POINTS;i++) // loop C

{

uint64_t ai=a[i];

uint64_t ti=t[i];

uint64_t ajnext=a[0];

uint64_t tjnext=t[0];

for (int j=0;j<NUM_POINTS;j++) // loop D

{

aj=ajnext;

tj=tjnext;

ajnext=a[j+1];

tjnext=t[j+1];

if ((i!=j) && (aj<=ai) && (tj<=ti)) domi++;

}

dom[i]=domi;

}

10. Estimate the runtime and speedup for your revised code in Question 9.

Body of loop now executes in: 2 cycles to issue ajnext and tjnext
reads, 3 cycles for comaprisons, 2 cycles for ands, 1 cycle for add
= 8 cycles. Note that there are 6 cycles in ops before getting
back to the next read; so, there is time for ajnext and tjnext
values to come back from memory before they are needed.
Total runtime drops from 33M to 8.3M.
Original case had 33 cycles per loop iteration, new version has
8, so speedup is roughly 33

8 = 4.1. 4.0 using complete cycle
estimate.

5



ESE532 Fall 2020

11. When pipelined, what is the minimum clock cycle time achievable for loop G in
time param()?

[Do not unroll the loop. Think about pipelining the loop body to start one new iteration
of the body on each clock cycle.]

3

max==

>> &

t1t2

10

i
arg

res

Largest loop is res→add (for b*t1[i]+res)→max→mux→res. So
delay of between registers is 3.
In practice, the mux is fast, so a second-order term compared to
add, max, or compare. However, we didn’t give you a separate
time for the mux from the compare-mux operation. In any case,
we will take 2, also.

6



ESE532 Fall 2020

12. Design a pipeline for loop G in the time param() calculation that achieves the minimum
cycle time (in ns) [as identified in the previous question].

max==

>> &

t1t2

10

i
arg

res

7



ESE532 Fall 2020

13. Describe how to map the multi opt() computation to the following heterogeneous sys-
tem to maximize the throughput of opt() calculations.

local
scratchpad
memory

1MB Main Memory

P 1KBVP VRFVP VRFVP VRFVP VRF
area
pipe

s

P 1KBVP VRFVP VRFVP VRFVP VRF
time
pipe

512b/cycle

• 1 instance of 1 GHz, II=1 area param (loop F) calculation pipeline (assume have
local stores for ap1 that can be used for each function invocation)

• 1 instance of time param (loop G) calculation pipeline (as you designed above)
(assume have local stores for tp1, tp2 that can be used for each function invoca-
tion)

• 2 single-issues, baseline processors (P), each running at 1 GHz.

• 8 Vector Processors (VP) with 8, 64b-wide vector lanes, each running at 1 GHz.
(for the loops that are data-parallel, you may assume computation achieves the
resource bound)

• There is a shared, 512b wide path to main memory available to the hardware
pipelines and the Vector Processors. It can transfer one contiguous blocks of
512b into a Vector Register File (VRF) or hardware pipe each 1 ns cycle, but it
takes 5 cycles of latency before a fetched value is available in the VRF or pipe.
The single-issue, baseline processors can only move 64b from the main memory
in cycle.

Use respective hardware pipelines for Loop A.
Use one single-issue processor for Loop B and one for Loop E.
Split Loop C into 8 independent blocks of 125 values and assign
to each of the 8 VPs.

8



ESE532 Fall 2020

14. Estimate the throughput of your mapped multi opt() design in cycles (1 ns cycles) per
opt() calculation completion.

As split, each loop runs on independent resources. The loop
graph can be pipelined at the coarse-grain level of loops. So,
the throughput limit is for the slowest stage of the coarse-grain
pipeline.
Loop A runs in 3 × 1000 + 8 cycles due to the II of 3 for
time param.
Loop B and E run in 12,000 and 7,000 cycles as established in
problem 1.

Loop C potentially runs in 125×1000×8
8 =125,000 cycles. However,

for that to work, we must deliver 2× 8× 64=1024 bits (8 values
of a[] and t[]) to each of 8 VPs every 8 cycles. In 8 cycles, the net-
work can deliver 8×512b, or half the bandwidth needed to keep
the 8 VPs running at full speed. So, the system is bottlenecked
on the memory and will take 250,000 cycles.

So, the total throughput is one opt() calculation every 250,000
cycles.

15. Estimate the latency of the opt() calculation for your mapped multi opt() design in
cycles (1 ns cycles) to compute each opt() result from when opt() first looks at its ap1,
tp1, tp2 inputs.

For a single input, it needs to compute through Loop A (3008
cycles), Loop C (250,000 cycles) (and Loop B at 12,000 cycles
can run in parallel with Loop C), then Loop E at 7,000 cycles,
for a latency of 260,008 cycles.
Assuming we start all stages at the same time, Loop A fin-
ishes quickly, but its data must wait for the VPs in Loop C
to start. So, it would also be reasonable to say the latency was
3×250, 000=750,000. Or, we could at least recognize that E will
produce a value early, so it takes 2× 250, 000 + 7, 000=257,000.

9


