
ESE532 Fall 2020

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2020 Design and Function Milestone Wednesday, November 4

Due: Friday, Nov. 13, 5:00pm

Group: Develop functional code. Identify design space options. Writeup (single turn-in for
group).

1. Identify major design space axes that could be explored for your implementation.

• For this milestone, aim for breadth (quantity of options)

• Each axis description can be 2–3 sentences. Identify challenge being addressed,
basic solution opportunity, and continuum. A single point in the design space is
not a continuum; except in rare cases, this should capture a range of potential
parameter values.

• Include a simple equation to illustrate ideal benefit (e.g., running N tasks in
parallel reduces runtime by a factor of N ; T (N) = T (1)/N) and the associated
resource costs.

• Cover all operations that must be accelerated including communication among op-
erators. (i.e., CDC, SHA, Deduplication, LZW, and communication/integration)

• Aim for at least 6 axes per operation. Identify a few associated with how opera-
tions interact with each other.

• Some of this should build on the parallelism opportunities you identified on the
previous milestone.

Example from FFT design discussed in class.

Axis: P , number of butterfly units.
Challenge: Improving the throughput of the FFT

Opportunity: Implement multiple hardware butterfly datapath units.
Continuum: This can range from 1 to a fully spatial design with P =

N
2

log(N) butterfly units.
Equation for Benefit: Throughtput(P) = P × SingleButterflyThroughput

Equation for Resources: Resources(P) = P × SingleButterflyResources

1

ESE532 Fall 2020

2. Refine your placeholder implementation into a functional implementation for the project
task that can run on a Zynq ARM Cortex A53 processor and produce a valid com-
pressed output stream that works with the supplied decompressor. Integrate with the
provided ethernet input flow. Compress from ethernet input to SDCard output.

• The primary goal for this assignment is functionality. As such, you should focus
on a simple design that captures the necessary behavior.

• As a result, this design need not be efficiently synthesizable to hardware.

• However, you will eventually be optimizing this design and likely exploring HLS
mappings to hardware. So, given a choice, you might want to use design constructs
and idioms that you know will be more amenable to HLS hardware mappings.

• Alternately, you should be prepared to rewrite your code later for efficient hard-
ware mappings.

3. Turn in a tar or zip file with your functional code to the designated assignment com-
ponent in canvas.

4. Turn in a tar or zip file with binaries to support execution of your code to the designated
assignment component in canvas.

(a) The tar (or zip) files should include:

• encoder – binary for your encoder to run on the the Ultra96

(b) Your encoder should take one argument:

• the file name where the program should store the compressed data.

5. Measure the raw ethernet performance from your host machine to your Ultra96 (See
Item 2d in “Setup and Walkthrough” at end of this milestone document).

6. Document your design.

(a) Code sources (e.g., URLs) for any open-source code you used as a starting point
or as a primary reference

(b) Current compression ratio and breakdown of contribution from deduplication and
from LZW compression.

(c) Overall throughput (Gb/s) of your current implementation.

(d) Description of all validation performed on your current functional implementation.

(e) Report the raw ethernet speed measurements (Problem 5) for all 3 partner’s
machines.

(f) Description of who did what. How did your team collaborate on the design,
implementation, and validation?

2

ESE532 Fall 2020

7. Identify any challenges your group had in collaboration and design integration this
week and how you plan to address them for future weeks.

• This is not a question about technical status – that should be addressed above.

• This is for teamwork, coordination, collaboration, communication, and workflow
issues.

• These may be things you’ve overcome by submission but didn’t go as smoothly
as they should have.

• In the unlikely case that everything went perfectly, identify the things you did
that made it work well. For your future plans, look forward to next week to see
if the same techniques are applicable or if there are new challenges that might
require different or additional techniques for things to continue to go well.

Setup and Walkthrough

1. Get New Ultra96 Platform

We have updated the hw6_platform_v2.tar.gz from Homework 6 and have included
the following in the new platform:

• Increased Contiguous Memory Allocation (CMA) size to 1024 MB

• Updated XRT runtime to version 2020.1_PU1

• Added DPDK library which you may use in the project to send packets to your
encoder

• Added iperf3 which you will use to measure ethernet speeds

• Enabled SHA3 unit and userspace API

• Added gdb

So please re-download the new platform from here:

• Ultra96 Platform

• Ultra96 Platform (Asia)

You will be using this platform in Vitis to compile your code as usual. Additionally,
you will need a new sd_card.img that utilizes this new platform. You can either
download that from the following links or make your own by building the hello world
example from Homework 6 using the new platform:

• sd card.img

• sd card.img (Asia)

3

https://doc.dpdk.org/guides/index.html
https://ese532-platforms.s3.amazonaws.com/hw6_platform_v3.tar.gz
https://ese532-platforms-asia.s3.ap-northeast-2.amazonaws.com/hw6_platform_v3.tar.gz
https://ese532-platforms.s3.amazonaws.com/sd_card.img
https://ese532-platforms-asia.s3.ap-northeast-2.amazonaws.com/sd_card.img

ESE532 Fall 2020

You will need to write this new image to your SD-card and put it in your Ultra96.
Usually Vitis would produce this sd_card.img for you, but it doesn’t when you just
compile CPU code (i.e. without any xclbin). We acknowledge that the above downloads
are big and are frustrating to download every time, but bear with us since this is our
second iteration using the linux platform in this course.

2. Measure Ethernet Speed

(a) Make sure that you have the following pre-requisites figured out (you should
already have this setup from homework 6):

i. Communication over ethernet. If you are using Windows, follow this docu-
ment. If you are on Mac, use the following instructions:

A. Download and install the AX88179 driver in the Mac (which is for the
ethernet usb):

B. And then in Mac, you can do screen /dev/tty.usbserial-1234_oj11 115200

to open the serial console for the Ultra96. Assign the ip address to ultra96
like you would do normally (see Homework 6 instructions). You can exit
the serial console by doing CTRL-A CTRL-\ and pressing y.

C. Once the ethernet driver is installed on your Mac, you can assign it an ip
address using sudo ifconfig en4 10.10.7.2 netmask 255.0.0.0 where
en4 is the interface name you will find from ifconfig.

ii. Install iperf3 on your computer: https://iperf.fr/iperf-download.php

iii. Find out what kind of USB ports you have in your computer: USB-2.0 or
USB-3.0.

(b) Open the Ultra96 terminal and issue the command: /usr/bin/iperf3 -s

(c) Open a terminal in your computer and issue the command: /usr/bin/iperf3 -c 10.10.7.1

(assuming 10.10.7.1 is the IP address you assigned to the Ultra96).

(d) You should see outputs similar to the following if you connected to a USB-3.0
port in your computer:

Connecting to host 10.10.7.1, port 5201

[5] local 10.10.7.2 port 38484 connected to 10.10.7.1 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd

[5] 0.00-1.00 sec 110 MBytes 920 Mbits/sec 0 266 KBytes

[5] 1.00-2.00 sec 109 MBytes 917 Mbits/sec 0 266 KBytes

[5] 2.00-3.00 sec 109 MBytes 916 Mbits/sec 0 276 KBytes

[5] 3.00-4.00 sec 109 MBytes 915 Mbits/sec 0 276 KBytes

[5] 4.00-5.00 sec 106 MBytes 893 Mbits/sec 0 287 KBytes

[5] 5.00-6.00 sec 104 MBytes 874 Mbits/sec 0 287 KBytes

[5] 6.00-7.00 sec 105 MBytes 878 Mbits/sec 0 287 KBytes

[5] 7.00-8.00 sec 105 MBytes 877 Mbits/sec 0 287 KBytes

[5] 8.00-9.00 sec 105 MBytes 880 Mbits/sec 0 287 KBytes

[5] 9.00-10.00 sec 105 MBytes 878 Mbits/sec 0 287 KBytes

- -

4

https://docs.google.com/document/d/101WwX_sR_1hcfAglg59Q6BphDqLThH_hGaDlyPaZZDU/edit?usp=sharing
https://docs.google.com/document/d/101WwX_sR_1hcfAglg59Q6BphDqLThH_hGaDlyPaZZDU/edit?usp=sharing
https://www.asix.com.tw/en/product/USBEthernet/Super-Speed_USB_Ethernet/AX88179
https://iperf.fr/iperf-download.php

ESE532 Fall 2020

[ID] Interval Transfer Bitrate Retr

[5] 0.00-10.00 sec 1.04 GBytes 895 Mbits/sec 0 sender

[5] 0.00-10.00 sec 1.04 GBytes 893 Mbits/sec receiver

iperf Done.

If you connected to a USB-2.0 port, you should see the following:

Connecting to host 10.10.7.1, port 5201

[5] local 10.10.7.2 port 37752 connected to 10.10.7.1 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd

[5] 0.00-1.00 sec 41.1 MBytes 345 Mbits/sec 0 120 KBytes

[5] 1.00-2.00 sec 40.5 MBytes 340 Mbits/sec 0 120 KBytes

[5] 2.00-3.00 sec 40.5 MBytes 340 Mbits/sec 0 120 KBytes

[5] 3.00-4.00 sec 40.5 MBytes 340 Mbits/sec 0 120 KBytes

[5] 4.00-5.00 sec 40.5 MBytes 340 Mbits/sec 0 120 KBytes

[5] 5.00-6.00 sec 40.8 MBytes 342 Mbits/sec 0 120 KBytes

[5] 6.00-7.00 sec 40.5 MBytes 340 Mbits/sec 0 120 KBytes

[5] 7.00-8.00 sec 40.5 MBytes 340 Mbits/sec 0 120 KBytes

[5] 8.00-9.00 sec 40.8 MBytes 342 Mbits/sec 0 120 KBytes

[5] 9.00-10.00 sec 40.6 MBytes 340 Mbits/sec 0 120 KBytes

- -

[ID] Interval Transfer Bitrate Retr

[5] 0.00-10.00 sec 406 MBytes 341 Mbits/sec 0 sender

[5] 0.00-10.00 sec 406 MBytes 340 Mbits/sec receiver

iperf Done.

This tells you that the upper bound on the throughput achieved by a placeholder
receiver is around 895 Mb/s (341 Mb/s if using USB-2.0 port) limited by the
Ugreen ethernet-to-USB interfaces. This will be your actual target instead of the
1 Gb/s stated in the project handout. That is, we’re not asking you to exceed
the speed supported by the ethernet-transceiver, but we are asking you to match
it. Measure on the setup for all project members. Plan to use the machine with
the fastest raw results for your highest-performance measurements.

3. Obtaining Starter Code and Integrating Ethernet Input

We will now describe how data will be sent through ethernet using the client and server,
the packet layout, and other relevant information for getting started to receiving real-
time data.

(a) Clone the ese532_code repository using the following command:

git clone https://github.com/icgrp/ese532_code.git

If you already have it cloned, pull in the latest changes using:

5

ESE532 Fall 2020

cd ese532_code/

git pull origin master

The code you will use for this section is in the project directory. The directory
structure looks like this:

project/

Client/

client.cpp

Decoder/

Decoder.cpp

Server/

encoder.cpp

encoder.h

event_timer.cpp

event_timer.h

server.cpp

server.h

compile_on_biglab.sh

LittlePrince.txt

Makefile

(b) Make sure the PLATFORM_REPO_PATHS is setup to the new platform you down-
loaded.

(c) Open a terminal and issue the following command. Change the command to
reflect the directory you installed Vitis in. The command sets up the paths used
by the Makefile.

source /opt/Xilinx/Vitis/2020.1/settings64.sh

If you are compiling on BigLab:

• git clone your repo on BigLab.

• wget the Ultra96 platform in BigLab and extract it in a folder.

• open the compile_on_biglab.sh file and change the PLATFORM_REPO_PATHS

to reflect the folder you put the platform in.

• Run compile_on_biglab.sh compile the code. Note that by default
compile_on_biglab.sh calls make all. Change it if you want to run a
different make command. Also note that you need to run with a shell script
on BigLab.

(d) Use make all to compile all the targets client, encoder, and decoder.

(e) Use make clean to clean all the generated files.

6

ESE532 Fall 2020

(f) Our basic model will be communication between two systems—your computer
and the Ultra96—over ethernet. Your computer will send packets at a fixed rate.
The Ultra96 will receive the data and compress it. Figure 2.5 from homework
6 shows you the setup and cabling. Since the first system is sending data at
a fixed rate, it is necessary for the receiver to compress the data at that rate
or data will be lost. We provide the code for the sender (Client/client.cpp).
Your project is connected to the receiver (Server/encoder.cpp). And then you
can use the decoder (Decoder/Decoder.cpp) to verify that you can recover the
original, unencoded file from the compressed file.

(g) Let’s run the given code with the system we have setup. After compiling the
code, copy over encoder binary, and the LittlePrince.txt as follows (adjust
the commands if you are not using Linux):

scp encoder LittlePrince.txt root@10.10.7.1:~/

And then open the Ultra96 terminal and run the encoder with ./encoder. The
program waits for a packet to arrive. Open a terminal in your computer and issue
the following command:

./client -i 10.10.7.1 -f LittlePrince.txt

You should see the following output in your Ultra96 terminal:

root@ultra96v2-2020-1:~# ./encoder

setting up sever...

server setup complete!

write file with 14247

--------------- Key execution times ---------------

Reading packets and processing : 0.228 ms

You should see the following output in your host terminal:

ip is set to 10.10.7.1

filename is LittlePrince.txt

bytes_read 14247

You can verify the output by doing the following in the Ultra96:

diff output_cpu.bin LittlePrince.txt

Note that our example is just writing the packets to a file. Your project will
process these packets with the encoder pipeline and write a compressed output.

(h) We’ll now describe what’s happening in the client and the server:

7

https://www.seas.upenn.edu/~ese532/fall2020/handouts/_images/env_setup.jpg

ESE532 Fall 2020

i. Packet Layout: We will be sending data via UDP datagrams. Linux sup-
ports the UDP protocol and receiving packets from the client can be done
easily using Linux IP. The code provided will direct you on how to setup
your compression pipeline to listen as well as handle incoming packets. The
maximum size of a packet will be 16K Bytes. The header of the packet will
be 2 bytes consisting of a done bit denoting that all of the data has been
transmitted as well as the length of the data contained inside the packet.

Figure 1: Packet Layout

8

ESE532 Fall 2020

ii. You will be specifically interested in the files
Server/server.cpp and Server/server.h. These are the files provided and
can be directly copied and pasted into your project to set up your server
pipeline to receive data. The rest of the repository can serve as an example
of how one could implement the design (Server/encoder.cpp). At a high
level you need to call the function setup server() once. Following this you
can makes calls to the function getpacket() to receive your next datagram.
Please note that your buffer passed into this function needs to be able to
handle the maximum payload size plus the two byte header. Please also note
that the recvfrom() Linux call is blocking. This means that your process
will be blocked until a datagram has arrived. Depending on your design this
may be ok. If you do not want to block you may look into the select()

system call as an alternative. This will allow you to check if data has arrived
in your socket and take actions accordingly.

You are of course free to write your own application. For more informa-
tion on how to receive the data you can refer to the man page. https:

//linux.die.net/man/2/recvfrom.

Alternatively, you can create your own client and server using the DPDK
library. Examples of how to write client and server code using DPDK can be
found in the following links:

• https://doc.dpdk.org/guides/index.html

• https://zenhox.github.io/2018/01/25/dpdk-pktSR/

9

https://linux.die.net/man/2/recvfrom
https://linux.die.net/man/2/recvfrom
https://doc.dpdk.org/guides/index.html
https://zenhox.github.io/2018/01/25/dpdk-pktSR/

ESE532 Fall 2020

Design Considerations

1. Configuring Sender: You will likely need to slow down the client’s data transfer to
begin with. If your system cannot keep up with the pace of the sender, packets will be
dropped.

To configure the sender, when you start the client from the Linux shell, it takes argu-
ments as shown:

./client -s 5 -f file -i ip_address_of_ultra96 -c chunksize

Usage example is:

./client -s 5 -f LittlePrince.txt -i 10.10.7.1 -c 2048

-s option specifies the sleep time or delay between packets (in microseconds)
-i option specifies ip address to send to
-f option specifies what file to send
-c option specifies the chunk size

For Problem 6c (and for later times where you characterize your throughput), you
should adjust the -s argument until your design fails. Report your maximum through-
put as the throughput associated with the smallest value of -s on which your de-
sign successfully receives and correctly compresses the input. Measure the actual
throughput by measuring the time it takes for the client to send the file. You can
use /usr/bin/time to measure the time.

2. Debugging Sending and Receiving of Packets: If you encounter problems with
sending and receiving packets between the client and the server, you can emulate the
socket programming. You can see an example of that here. Specifically in server.cpp

and server.h, you can see that instead of using sockets, you can read a file and send
it in pieces to the encoder pipeline to emulate socket programming.

3. Options for SHA implementation: You have four options for implementing SHA
in your encoder pipeline:

• Writing serialized SHA-256 running on the ARM processor.

• Using the dedicated SHA3-384 unit in the Zynq Ultrascale.

• Using SHA-256 NEON intrinsics.

• Implementing SHA-256 on FPGA using HLS (not until P3).

The specific option you choose will have implications on the maximum throughput you
can achieve for your encoder pipeline. Moreover, you will need to adjust your design
accordingly if you end up using the SHA3 unit, since it has a different digest size.

10

https://github.com/micallef25/SDSoc-Examples-Fall2019/tree/emulated_stream/src

ESE532 Fall 2020

• You can find throughput comparisons of SHA-256 on NEON and the dedicated
SHA3 unit here: https://www.xilinx.com/support/documentation/white_papers/
wp512-accel-crypto.pdf.

• You can find an example of how to use the SHA3 unit here: https://xilinx-wiki.
atlassian.net/wiki/pages/viewpage.action?pageId=18841654&pageVersion=

1. Note we have already enabled the SHA3 unit and user-space API in the new
platform. You will just need to write the driver.

4. Multiple Cores: Recall from Homework 3 that you can utilize multiple cores using
std::threads. There are four cores (ARM Cortex-A53) on the Ultra96 and you should
consider how the cores are different from the Cortex A-72 you utilized in Homework 3.
Moreover, recall that each core on the Ultra96 has one 64-bit NEON SIMD unit with
128-bit registers that you can utilize simultaneously with std::threads.

11

https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://xilinx-wiki.atlassian.net/wiki/pages/viewpage.action?pageId=18841654&pageVersion=1
https://xilinx-wiki.atlassian.net/wiki/pages/viewpage.action?pageId=18841654&pageVersion=1
https://xilinx-wiki.atlassian.net/wiki/pages/viewpage.action?pageId=18841654&pageVersion=1
https://www.seas.upenn.edu/~ese532/fall2020/handouts/hw4/walk_through.html#arm-core-table

ESE532 Fall 2020

Vitis GUI Workflow

We have given you a Makefile so far (and still recommend that you use makefiles). However,
if you would like a GUI based compilation workflow, following is a tutorial on how you can
compile code for the Ultra96 using the Vitis GUI.

1. Open a terminal and issue the following command. Change the command to reflect
the directory you installed Vitis in. If you have installed Vitis on Windows, you can
open Vitis from the Programs.

source /opt/Xilinx/Vitis/2020.1/settings64.sh

2. Launch Vitis by typing vitis in the terminal. You will see the following screen:

12

ESE532 Fall 2020

3. Enter a directory in the Workspace field where you would like to store your projects
and then click launch.

4. From the next screen, click on Create Application Project and press Next. You
will then see the screen on selecting a platform:

5. If you don’t see your ese532_hw6_platform, browse to the platform directory (where
the ese532_hw6_platform.xpfm is) by clicking on Add. Click Next.

6. Give an application name and click Next and then Next. You will then see the following
screen:

13

ESE532 Fall 2020

7. When you will start writing FPGA code, you should select the Empty Application

template from SW acceleration templates option. Since in P2 we are only writing
CPU code, you should select the Empty Application template from the
SW development templates option. Click on Finish. You should now see the follow-
ing screen:

14

ESE532 Fall 2020

8. You can learn more about the Vitis IDE from here.

9. In the Explorer tab, right-click on src folder and click on Import Sources. You will
see a screen as follows:

15

https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/won1553474198838.html

ESE532 Fall 2020

10. Browse to the directory where you will import sources from and click OK. Check all the
sources you want to import and click Finish.

11. Right click on the encoder project from the Explorer tab and select C/C++ Build Settings.
You will see a screen as follows:

16

ESE532 Fall 2020

12. Specify optimization level to be O3. In the miscellaneous tab, you can specify other
compiler options, such as -march=armv8-a+simd -mtune=cortex-a53 to enable NEON
SIMD unit for instance. Click on Apply. Now go to the Build Artifact tab as follows:

17

ESE532 Fall 2020

13. Make the artifact extension blank (this is just so that the binary we are producing in the
Makefile is the same as this GUI workflow. .elf is the extension for the executable).
Click on Apply and Close.

14. Now click on the Build button from the menu to build the project. You should see in
the Console that Build Finished.

15. In the Explorer tab, you should now see a Debug folder. This folder has the encoder

that you should copy over to the Ultra96. Find the directory of the folder by right-
clicking on the encoder and clicking as shown below. Open that folder in the terminal
and copy the binary as you would do usually.

18

ESE532 Fall 2020

16. This concludes how to compile Ultra96 code using the Vitis GUI.

17. You can also compile the client code using the Vitis GUI. From the menu, click
on File→New→Other→C++ Project→Hello World C++ Project as shown below.
Give a name to the project and click on Finish as follows. Click on Open Perspective
and continue.

19

ESE532 Fall 2020

18. Delete the Hello World code and import your client code. Change the optimization
level to O3 from the C/C++ Build Setting. Build and you should see the binary in
the Debug folder as usual.

19. You can repeat the above steps to compile the Decoder as well. It’s up to you which
target you compile the Decoder against—aarch64 or x86—depending on whether you
want to test the decoding on the Ultra96 or your host machine.

Questions

If anything is unclear please post on piazza or come to office hours, and we will be glad to
assist.

20

