
ESE532 Fall 2020

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2020 I/O and FPGA Milestone Wednesday, November 11

Due: Friday, Nov. 20, 5:00pm

1. Move some part of your design onto the FPGA for acceleration.
Writeup should identify what you moved onto the FPGA, how you validated it, and
how you tuned it. Identify the current throughput achieved.

2. Use the supplied measurement routines (Refer to Tutorial 1) to report the input
throughput to your encoder.

3. Use the supplied measurement routines to report the maximum real-time throughput
the current design can sustain (Refer to Tutorial 2 and see how timers are used. Ad-
ditionally, notice how you can use getProfilingInfo on cl::Event to get the kernel
execution time).

4. Turn in a tar file with your FPGA accelerated code to the designated assignment
component in canvas (one per group).

5. Turn in a tar or zip file with binaries to support execution of your code to the designated
assignment component in canvas (one per group).

(a) encoder.xclbin for FPGA kernel

(b) encoder for OpenCL host code executable

(c) decoder executable configured to work with your encoded file and that can be
run on the Ultra96. (Most likely, this is just a compilation of the Decoder.cpp

we supplied; however, if you chose a different maximum block size, you may need
to change CODE LENGTH; so give us back one with that change made.)
Make sure to compile it with the aarch64-linux-gnu-g++ compiler and test it
on the Ultra96. While you could run the decoder on your host machine (which
could be Linux/Mac OS/Windows), we will run your decoder on the Ultra96.

• Your compression program (OpenCL host code) should take one argument:

– the file name where the program should store the compressed data.

Your program should assume that encoder.xclbin is in the same directory as
the host executable.

• Your compression program should start up ready to receive inputs.

We don’t expect significant FPGA acceleration on this milestone, but we do want you to
start exploring acceleration options.

1

ESE532 Fall 2020

Tutorials

1. Measuring Ethernet Throughput in the Encoder

In P2, you measured the raw ethernet throughput using iperf3 and got about 895
Mbits/s. Note that, by default iperf3 sent TCP packets to the receiver in the Ultra96,
whereas we are using UDP in the project, which is a faster protocol. We will now show
you how to measure the input throughput in your encoder.

(a) We have updated the server code we gave you in P2 with some instrumentation.
Do the following to get the latest changes:

cd ese532_code/

git pull origin master

(b) Compile the encoder code, copy the binary to the Ultra96 and run it.

(c) Compile the client code and run the client with the supplied vmlinuz.tar file as
follows:

./client -f vmlinuz.tar -i 10.10.7.1

(d) You should see the following output in the Ultra96 terminal:

root@ultra96v2-2020-1:~# ./encoder.elf

setting up sever...

server setup complete!

write file with 69079040

--------------- Key Throughputs ---------------

Input Throughput to Encoder: 1079.33 Mb/s. (Latency: 0.512015s).

root@ultra96v2-2020-1:~# diff vmlinuz.tar output_cpu.bin

You should see the following output in the host terminal:

filename is vmlinuz.tar

ip is set to 10.10.7.1

payload_size is 8192

bytes_read 69079040

(e) You can see that we are indeed getting about 1 Gb/s input throughput. You
can look into encoder.cpp and see that we are using a timer to measure the
total latency taken by the call: server.get_packet(input[writer]) (ignoring
the first call which waits for the first packet to arrive). Later in the code, we
calculated the throughput as follows:

float ethernet_latency = ethernet_timer.latency() / 1000.0;

float input_throughput = (bytes_written * 8 / 1000000.0) / ethernet_latency;

2

ESE532 Fall 2020

std::cout << "Input Throughput to Encoder: "

<< input_throughput << " Mb/s."

<< " (Latency: " << ethernet_latency << "s)."

<< std::endl;

(f) Note that it is very important that you verify the output using diff. You can
lose packets if your encoder cannot keep up with the input throughput, in which
case you should use the -s option in the client to transfer at a lower speed.

(g) Note that we have increased the PAYLOAD SIZE to 8192 bytes in the updated code.

2. FPGA Acceleration Tutorial: Bloom Filter

Using bloom filter as the application, this tutorial shows you:

• a significant speedup (8×) when computations are offloaded on the FPGA effi-
ciently.

• how to write an HLS kernel for a CPU implementation (using ap uint, hls::stream,
and pragmas).

• how to achieve communication-compute overlap using sub-buffers.

(a) Clone the ese532_code repository using the following command:

git clone https://github.com/icgrp/ese532_code.git

If you already have it cloned, pull in the latest changes using:

cd ese532_code/

git pull origin master

The code you will use for this section is in the vitis_tutorials/bloom directory.
The directory structure looks like this:

bloom/

cpu/

fpga/

MurmurHash2.c

common.h

compute_score_fpga_kernel.cpp

compute_score_host.cpp

hls_stream_utils.h

main.cpp

sizes.h

xcl2.cpp

xcl2.hpp

3

ESE532 Fall 2020

The cpu folder has a standalone CPU implementation of the bloom filter, which
you can compile using the Vitis GUI flow from P2 and run it. The main.cpp code
in the fpga folder has the OpenCL host code. The top level HLS function is in
compute score fpga kernel.cpp. We will now show how to use the Vitis GUI
flow to compile OpenCL and HLS code (if you would like to use a Makefile,
modify and use the one from Homework 6).

(b) Use the instructions from Milestone 2 and start vitis. Create or use an existing
workspace, create a new application project and use the provided platform.

(c) Choose Empty Application from the SW acceleration templates as follows:

4

ESE532 Fall 2020

(d) Right-click on the src folder and click on import sources. Import the source files
for this project as follows:

5

ESE532 Fall 2020

(e) Click on bloom.prj from the Explorer and change the Active build configuration

to Hardware as shown below:

6

ESE532 Fall 2020

(f) Add an xclbin container by clicking on the button circled in red below. Rename
the container to runOnfpga hw by clicking on the name binary container 1.
This is the xclbin name that the host code uses.

7

ESE532 Fall 2020

(g) Now click on the button circled in blue below. Choose the runOnfpga function
as the hardware function.

8

ESE532 Fall 2020

(h) From the Assistant view, double click on Hardware as follows:

9

ESE532 Fall 2020

(i) Click on Hardware→runOnfpga hw→runOnfpga. This brings the screen where
you can specify the number of compute units, compiler options for the kernel,
assign different ports to inputs etc. Keep the defaults for now:

10

ESE532 Fall 2020

(j) Click on bloom.prj. Check out the Hardware optimization option where you
can change the optimization level for the hardware function. Additionally, recall
from P2 that you can change the optimization level of the host code from the
C/C++ build settings. Now click on the build button on the menu bar to start
compilation:

11

ESE532 Fall 2020

(k) Once the compilation completes, open the Hardware folder from the Explorer.
The binaries are in the package/sd card folder.

12

ESE532 Fall 2020

(l) Copy the binaries and the xrt.ini to the Ultra96 as follows and then reboot the
Ultra96.

(m) Run the code using the following commands in the Ultra96:

ifconfig eth0 10.10.7.1 netmask 255.0.0.0

export XILINX_XRT=/usr

./bloom 40000 64

You should see the following output in the terminal:

root@ultra96v2-2020-1:~# ./bloom 40000 64

Initializing data

Creating documents - total size : 559.858 MBytes (139964416 words)

Creating profile weights

[1018.547572] [drm] Pid 769 opened device

[1018.551450] [drm] Pid 769 closed device

[1018.558627] [drm] Pid 769 opened device

Loading runOnfpga_hw.xclbin

[1018.617733] [drm] zocl_xclbin_read_axlf The XCLBIN already loaded

[1018.617765] [drm] zocl_xclbin_read_axlf 3c650f2f-9cc2-408a-8c92-0ec3bc335ce3 ret: 0

[1018.633496] [drm] bitstream 3c650f2f-9cc2-408a-8c92-0ec3bc335ce3 locked, ref=1

[1018.641197] [drm] Reconfiguration not supported

[1018.652995] [drm] bitstream 3c650f2f-9cc2-408a-8c92-0ec3bc335ce3 unlocked, ref=0

Processing 559.858 MBytes of data

Splitting data in 64 sub-buffers of 8.748 MBytes for FPGA processing

--

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

13

ESE532 Fall 2020

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

waiting...

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

waiting...

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

[ooqueu]: Completed buffer migrate

waiting...

.

.

14

ESE532 Fall 2020

Executed FPGA accelerated version | 1414.5707 ms (FPGA 247.878 ms)

Executed Software-Only version | 11779.4325 ms

--

Verification: PASS

(n) The verbose outputs in the terminal is caused by the call set callback(flagDone,

"oooqueue"); in the host code. This is a helper function in xcl2.hpp that prints
out the state of an OpenCL event. You can use it to debug OpenCL calls. In ad-
dition, you can also use the OCL CHECK macro from xcl2.hpp to see if an OpenCL
call succeeded.

(o) Copy the generated run summary and csv files to your host computer and open
vitis analyzer. You can see overlap of kernel execution with data transfer and
OpenCL API calls.

15

ESE532 Fall 2020

(p) If you scroll forward in the timeline, you can see overlap between computation
in the cpu and the fpga as shown below. From the output in 2m, these calls

correspond to the waiting... print outs. You can check in the host code, how
we wait for a cl::Event to finish based on a condition, and when the event notifies
that it’s finished, we start executing the cpu code, so that it overlaps with the
fpga execution:

needed += size;

if (needed > available) {

clWaitForEvents(1, (const cl_event *) &flagWait[iter]);

std::cout << "waiting..." << std::endl;

available += subbuf_doc_info[iter].size / sizeof(uint);

iter++;

}

16

ESE532 Fall 2020

(q) Now run with a different ITER value and look at the updated trace:

./bloom 40000 128

You can see that since the kernel execution time gets smaller as you increase the
iteration number, the next kernel execution starts almost immediately.

(r) Running a sweep on the number of iterations, we see that ITER=32 is the most
performant for this design:

./bloom 40000 8

Executed FPGA accelerated version | 1413.3252 ms (FPGA 305.796 ms)

Executed Software-Only version | 11780.3703 ms

--

Verification: PASS

./bloom 40000 16

Executed FPGA accelerated version | 1396.5072 ms (FPGA 298.034 ms)

Executed Software-Only version | 11770.1858 ms

--

Verification: PASS

./bloom 40000 32

Executed FPGA accelerated version | 1391.2062 ms (FPGA 284.336 ms)

Executed Software-Only version | 11768.1306 ms

--

Verification: PASS

./bloom 40000 64

Executed FPGA accelerated version | 1414.5707 ms (FPGA 247.878 ms)

17

ESE532 Fall 2020

Executed Software-Only version | 11779.4325 ms

--

Verification: PASS

./bloom 40000 128

Executed FPGA accelerated version | 1458.1155 ms (FPGA 179.195 ms)

Executed Software-Only version | 11782.2403 ms

--

Verification: PASS

./bloom 40000 256

Executed FPGA accelerated version | 1533.5603 ms (FPGA 10.701 ms)

Executed Software-Only version | 11798.4502 ms

--

Verification: PASS

(s) This concludes a top-down walk-through of this tutorial. To learn more about
this design, read the following in-order:

i. Overview of the Original Application

ii. Architect a Device-Accelerated Application

iii. Implementing the Kernel

iv. Data Movement Between the Host and Kernel

Note that the tutorial is written for data center cards. Some of the parameter
choices, such as port data width, DDR memory etc. should be reconsidered for the
Ultra96 to get optimal performance (refer to this paper: Unexpected Diversity:
Quantitative Memory Analysis for Zynq UltraScale+ Systems).

3. Using Multiple Compute Units

The code you will use for this section is in the vitis_tutorials/mult_compute_units
directory. The directory structure looks like this:

mult_compute_units/

host.cpp

vadd.cpp

xcl2.cpp

xcl2.hpp

The host.cpp code has the OpenCL host code. The top level HLS function is in
vadd.cpp.

(a) Create an application project as described in Tutorial 2, compile and run the
project.

(b) The system diagram in vitis analyzer looks like:

18

https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/1_overview.md
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/3_architect-the-application.md
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/4_implement-kernel.md
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/5_data-movement.md
https://ieeexplore.ieee.org/document/8977835
https://ieeexplore.ieee.org/document/8977835

ESE532 Fall 2020

which shows that there is one vadd kernel. The application timeline looks like:

19

ESE532 Fall 2020

From the application trace, we can see that although the host scheduled all ker-
nel executions concurrently, the second, third and fourth execution requests are
delayed as there is only one compute unit on the FPGA.

(c) Increase the number of compute units to 4 and assign separate ports by going to
the window mentioned in 2i. Compile and run the updated configuration. The
vitis analyzer system diagram would look like:

20

ESE532 Fall 2020

The application timeline looks like:

You can now see that the application takes advantage of the four compute units,
and that the kernel executions overlaps and executes in parallel.

(d) Look into the host code and learn how the multiple compute units are utilized:

for (int i = 0; i < num_cu; i++) {

int narg = 0;

// Setting kernel arguments

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in1[i]));

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in2[i]));

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_output[i]));

OCL_CHECK(err, err = krnls[i].setArg(narg++, chunk_size));

// Copy input data to device global memory

OCL_CHECK(err, err = q.enqueueMigrateMemObjects({ buffer_in1[i],

buffer_in2[i] }, 0 /* 0 means from host*/));

// Launch the kernel

OCL_CHECK(err, err = q.enqueueTask(krnls[i]));

}

You can see from the code that by creating an array of kernels and enqueueing
them in a loop, you can utilize the multiple compute units.

4. Streaming Kernel to Kernel Memory Mapped

The code you will use for this section is in the vitis_tutorials/streaming_k2k_mm

directory. The directory structure looks like this:

21

ESE532 Fall 2020

streaming_k2k_mm/

host.cpp

krnl_stream_vadd.cpp

krnl_stream_vadd_vmult.ini

krnl_stream_vmult.cpp

xcl2.cpp

xcl2.hpp

The host.cpp code has the OpenCL host code. There are two disjoint HLS kernels:
krnl stream vadd.cpp and krnl stream vmult.cpp. krnl stream vadd vmult.ini

specifies how the two kernels are connected with each other. Read about the tutorial
from here and then continue.

(a) Create an application project as described in Tutorial 2. Add the two kernels as
hardware functions, add the V++ linker option:
--config ../src/krnl_stream_vadd_vmult.ini

22

https://xilinx.github.io/Vitis_Accel_Examples/master/html/streaming_k2k_mm.html

ESE532 Fall 2020

(b) Compile and run the project. The system diagram in vitis analyzer looks like:

which shows that the two kernels are reading from the DRAM and are also con-
nected via a stream connection. The application timeline looks like:

From the application trace, we can see that the two kernels are running concur-
rently.

5. Using Faster Clocks

(a) In Homework 6, we saw the our platform provides multiple clocks:

23

ESE532 Fall 2020

(b) We can assign faster clocks to our kernels in Tutorial 4. You can specify them
in a configuration file and pass it in the V++ Linker Options. Looking at the
krnl stream vadd vmult.ini, you can see that we have assigned Clock Index 1
(300 Mhz) to the kernels:

[connectivity]

stream_connect=krnl_stream_vadd_1.out:krnl_stream_vmult_1.in2:64

[clock]

id=1:krnl_stream_vadd_1

id=1:krnl_stream_vmult_1

where the format of the specification is id=<clock index>:<compute unit name>.
You should start with a slower clock in your project so that you can meet tim-
ing easily. After you have made HLS and host code optimizations, you can try

24

ESE532 Fall 2020

increasing the clock frequency until your design fails to meet timing.

(c) You can check if the clocks were correctly assigned by opening the vivado project
as instructed in Homework 6:

You can see from the vivado block diagram that clock index 1 is assigned. More-
over, you can also see that an AXI Stream FIFO is connecting the two kernels.

25

