ESE532 Fall 2020

University of Pennsylvania
Department of Electrical and System Engineering
System-on-a-Chip Architecture

ESE532, Fall 2020 [/O and FPGA Milestone Wednesday, November 11

Due: Friday, Nov. 20, 5:00pMm

1.

Move some part of your design onto the FPGA for acceleration.
Writeup should identify what you moved onto the FPGA, how you validated it, and
how you tuned it. Identify the current throughput achieved.

Use the supplied measurement routines (Refer to Tutorial 1) to report the input
throughput to your encoder.

Use the supplied measurement routines to report the maximum real-time throughput
the current design can sustain (Refer to Tutorial 2 and see how timers are used. Ad-
ditionally, notice how you can use getProfilingInfo on cl::Event to get the kernel
execution time).

Turn in a tar file with your FPGA accelerated code to the designated assignment
component in canvas (one per group).

Turn in a tar or zip file with binaries to support execution of your code to the designated
assignment component in canvas (one per group).

(a) encoder.xclbin for FPGA kernel
(b) encoder for OpenCL host code executable

(c) decoder executable configured to work with your encoded file and that can be
run on the Ultra96. (Most likely, this is just a compilation of the Decoder.cpp
we supplied; however, if you chose a different maximum block size, you may need
to change CODE_LENGTH; so give us back one with that change made.)

Make sure to compile it with the aarch64-1linux-gnu-g++ compiler and test it
on the Ultra96. While you could run the decoder on your host machine (which
could be Linux/Mac OS/Windows), we will run your decoder on the Ultra96.

e Your compression program (OpenCL host code) should take one argument:
— the file name where the program should store the compressed data.

Your program should assume that encoder.xclbin is in the same directory as
the host executable.

e Your compression program should start up ready to receive inputs.

We don’t expect significant FPGA acceleration on this milestone, but we do want you to
start exploring acceleration options.

ESE532 Fall 2020

Tutorials

1. Measuring Ethernet Throughput in the Encoder

In P2, you measured the raw ethernet throughput using iperf3 and got about 895
Mbits/s. Note that, by default iperf3 sent TCP packets to the receiver in the Ultra96,
whereas we are using UDP in the project, which is a faster protocol. We will now show
you how to measure the input throughput in your encoder.

(a) We have updated the server code we gave you in P2 with some instrumentation.
Do the following to get the latest changes:

cd eseb32_code/
git pull origin master

(b) Compile the encoder code, copy the binary to the Ultra96 and run it.

(¢) Compile the client code and run the client with the supplied vmlinuz.tar file as
follows:

./client -f vmlinuz.tar -i 10.10.7.1

(d) You should see the following output in the Ultra96 terminal:

rootQultra96v2-2020-1:"# ./encoder.elf

setting up sever...

server setup complete!

write file with 69079040

——————————————— Key Throughputs ---—————--———-—-

Input Throughput to Encoder: 1079.33 Mb/s. (Latency: 0.512015s).
root@ultra96v2-2020-1:"# diff vmlinuz.tar output_cpu.bin

You should see the following output in the host terminal:

filename is vmlinuz.tar
ip is set to 10.10.7.1
payload_size is 8192
bytes_read 69079040

(e) You can see that we are indeed getting about 1 Gb/s input throughput. You
can look into encoder.cpp and see that we are using a timer to measure the
total latency taken by the call: server.get_packet (input[writer]) (ignoring
the first call which waits for the first packet to arrive). Later in the code, we
calculated the throughput as follows:

ethernet_timer.latency() / 1000.0;
(bytes_written * 8 / 1000000.0) / ethernet_latency;

float ethernet_latency
float input_throughput

2

ESEb532

std::cout <<
<<
<<
<<

Fall 2020

"Input Throughput to Encoder: "

input_throughput << " Mb/s."
" (Latency: " << ethernet_latency << "s)."
std: :endl;

(f) Note that it is very important that you verify the output using diff. You can

lose packets if

your encoder cannot keep up with the input throughput, in which

case you should use the —s option in the client to transfer at a lower speed.

(g) Note that we have increased the PAYLOAD_SIZE to 8192 bytes in the updated code.

2. FPGA Acceleration Tutorial: Bloom Filter

Using bloom filter as the application, this tutorial shows you:

e a significant speedup (8x) when computations are offloaded on the FPGA effi-

ciently.

e how to write an HLS kernel for a CPU implementation (using ap_uint, hls: :stream,

and pragmas).

e how to achieve communication-compute overlap using sub-buffers.

(a) Clone the ese532_code repository using the following command:

git

If you already

clone https://github.com/icgrp/eseb32_code.git

have it cloned, pull in the latest changes using:

cd eseb32_code/

git

pull origin master

The code you will use for this section is in the vitis_tutorials/bloom directory.

The directory

structure looks like this:

bloom/
cpu/
fpga/

MurmurHash2.c

common.h
compute_score_fpga_kernel.cpp
compute_score_host.cpp
hls_stream_utils.h

main.cpp

sizes.h

xcl2.cpp

xcl2.hpp

ESE532 Fall 2020

The cpu folder has a standalone CPU implementation of the bloom filter, which
you can compile using the Vitis GUI flow from P2 and run it. The main.cpp code
in the fpga folder has the OpenCL host code. The top level HLS function is in
compute_score_fpga kernel.cpp. We will now show how to use the Vitis GUI
flow to compile OpenCL and HLS code (if you would like to use a Makefile,
modify and use the one from Homework 6).

(b) Use the instructions from Milestone 2 and start vitis. Create or use an existing
workspace, create a new application project and use the provided platform.

Eclipse Launcher x

Select a directory as workspace

Vitis IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | /media/lilbirb/research/code/ese532_code/project =~ Browse...

Use this as the default and do not ask again

} Restore other Workspace
~ Recent Workspaces

02-bloom

projects

concurrent kernel execution

linux Ffiles

app

Cancel Launch

New Application Project o ®

Platform

Choose a platform For your project. You can also create an application from XA through the ‘Create a new platform from hardware E
(XsA)" tab.

Select a platform from repository ;; Create a new platform from hardware (XSA)

Find: + Add £ Manage

[ieses32_hwo_pfm [custom] Embedded Accel

/medialilbirb/research/git/avnet/petalinux/project

Platform Info
General Info

Acceleration Resources Domain Details
Name: eses32 hws pfm clock Frequencies Domains
Clock Frequency (MHz) 1
Part: xczu3eg-sbvadsa-1-i Domain name Details
. ceu 1200.000000 | [inyx on psu_cortexas3 CPU: cortex-as3
Family: 2zynquplus PLO 150.000000 0s: linux
Description: L1 300.000000
ption: PL2 75.000000
eses32_hwo_pfm PL3 100000000
PL4 200.000000
PLS 400.000000
PLG 600.000000
@ <Back Next> cancel

(c) Choose Empty Application from the SW acceleration templates as follows:

ESEb532

New Application Project a

Templates

select a template to create your project.

Available Templates:
Find:

B Empty Application
~ SW acceleration templates

Vector Addition
~ Sw development templates

Empty Application (C++)

Linux Empty Application

Linux Hello World

Vitis IDE Examples... || Vitis IDE Libraries...

@

<Back Next >

Creates a new Empty application

Cancel

™

Fall 2020

(d) Right-click on the src folder and click on import sources. Import the source files

for this project as follows:

Import Sources
File system

Import resources from the local file system.

From directory: /media/lilbirb/research/code/ese532_code/vitis_tutorials/bl Browse...
@ compute_score_host.cpp
[€ hls_stream_utils.h
[€ main.cpp
[¢ MurmurHash2.c
¢l sizes.h
[xcl2.cpp
[& xcl2.hpp
Filter Types... Select All Deselect All
Into Folder: | bloom/src Browse...
Options
Overwrite existing resources without warning
Create top-level Folder
Advanced >>
Cancel Finish

L/

&

ESEb532

(e) Click on bloom.prj from the Explorer and change the Active

to Hardware as shown below:

Edit

search Xilinx Project Window Help

WmR g B-RE- B0~ - DS @

build

Fall 2020

configuration

Hardware Functions

Name Compute Units Port Data width

\‘Assistantmw =] @/ O% v =0 W
bloom [Embedded OpencL]
 Emulation-SW [Software Emulation]
< Emulation-HW [Hardware Emulation]
“ Hardware [Hardware]

[E Console zﬂli Problems [E) vitis Log (D Guidance

S & B

Default

Hardware optimization: Default optimization (-00)

Max Memory Ports

(SR 2 Quick Access
~L Explorer Z@W B S ¥ = O || &bloom_system {’ﬂ bloom 531 = O |5 outlint
~ [> bloom_system [eses32_code master] [eses32_hwe pfm] || i Application Project Settings Active build configurati e e g ||Anoutline

>bloom [ese532_code master] [linux on psu_cortexa53]

¥ i) Includes General Options
» .
» ¢ > Emulation-HwW Project name: bloom Target: Hardware
» 7 > Emulationsw
b 65 - Hardware Platform: ese532 hwé pfm Host debug: 0
Runtime: OpencL Kerneldebuc
24 bloom.prj nbe - Kernel debug mode m
e} D Report level:

|

MmB-Od~ = 0O ”E Emulation Console zz}

ESE532 Fall 2020

(f) Add an xclbin container by clicking on the button circled in red below. Rename
the container to runOnfpga hw by clicking on the name binary container_ 1.
This is the xclbin name that the host code uses.

orkspace - bloom/bloom.prj

File Edit Search Xilinx Project Window Help

in~ -/ it-O0- S DI W T D~ Quick Access || [2 Design 45 Debug
. Explorer zz} B/% e - = 0 | & bloom_system [x bloom zz}@ main.cpp = 8 |[& outline zz} =8
~ [> bloom _system [ese532_code master] [eses32_hwe_pfm]

 Application Project Settings Active build configuration: Hardware ~ & [|Anoutline s notauailsble.
~ §} >bloom [ese532_code master] [linuxon psu_cortexas3]

b @ Includes General

Options
. N
’ € - Emulationtw Projectname: bloom Target: i
» % >Emulation-SW
: : :
» &2 > Hardware Platform: ese532 hwé pfm Host debug: O
MRS Runtime: OpenCL Kernel debug

» [commonh
} [compute_score_fpga_kernel.cpp

Kernel debugmode:

Report level: Default =
£ .
» [compute_score_host.cop Hardware optimization: Default optimization (-00) -
» [hls_stream_utils.h
» [main.cpp Hardware Functions B o x
» [MurmurHash2.c

» [sizes.h Compute Units Port Data Width Max Memory Ports
» [xcl2.cpp & runOnfpga;
» [xcl2.hpp

% bloom.prj

2 bloom_system.sprj

\lAssistantXK] Em8480% Y =0 1
~ % bloom [Embedded OpencL]

» & Emulation-SW [Software Emulation]

» < Emulation-HW [Hardware Emulation]

» % Hardware [Hardware]

& console xx}[Problems [] Vitis Log (D Guidance 4 @
8uild Console [bloom_system, Emulation-sw]

5
=
2]
P

a

B-fv = 1o EEmulationConsoleXx} L3 v =8

ESE532 Fall 2020

(g) Now click on the button circled in blue below. Choose the runOnfpga function
as the hardware function.

vitis_workspace - bloom/bloom.prj - Vitis IDE

ch Xilinx Project Window Help
i o ® :
B-&-it-0-l 5D - o Add Hardware Functions quickAccess || FTERE
BlS e ¥ =8 A& blog| Selectanitem to epen(?=any character, * =anystring): - = B ||% outline ggw
stem [ese532_code master] [ese532_hwé_pfm] || & Ap| ® | Figuration: « | |[Anoutlineis e.
[ese532_code master] [linux on psu_cortexas3] + More Options
= Gene Mmatchingitems:
:MEDWHW Proj¢ e MurmurHash2(constvoid *, int, unsigned int) - MurmurHashz.c
;:a"r’;"s"" platf | © MurmurHash2(unsigned int, int, unsigned int) - compute_score fpga_kernel.cop
aunt © compute_hash_flags(hls::stream<ap_uint<int64>,int0> &, hls::stream<ap_uint<int256>,int0> &, unsigned int (*)[1¢
U | o compute_hash_Flags_dataFlow(ap_uint<int512>* ap_uint<int512>*, unsigned int (*)[16384], unsigned int)
ol o doc_len()
npute_score_fpga_kernel.cpp o event ch(2, void %)
“P”“—S‘”Fl—"‘]“““’" o find_binary_file(const std::_ o 1:basic_string<char,std:ichar_traits<char> std::allocator<char>> & const std::_)
Stream_utils o get_devices(const std:;_cxxd 1:basic_string<char,stdz:char_traits<char>std:zallocator<chars> &)
in.cpp Hardy | o get_xil_devices() B
furHashze o import_binary_File(std::_cxoxi1zbasic_stringschar,stdizchar_traits<char> std::allocator<char>»)
Nafl | is_emulation()
E. |
® is_xpr_device(const char *)
: © main(int, char **)
ystem.sprj ® runOnCPU(unsigned int *, unsigned int *, unsigned int *, unsigned long int *, unsigned long int *, unsigned int, unsig
o]
e set_callback(?, const char *)
o setupData()
EE0R0% - -o]
em [System]
:mbedded OpencL]
ition-SW [Software Emulation]
\tion-HW [Hardware Emulation]
vare [Hardware] runOnfpga(ap_uint<int512>*, ap_uint<int512> *, unsign...d int, bool) - bloom/src/compute_score fpga_kernel.cpp
Cancel OK
problems [Vitis Log (i) Guidance 4 %9 HE =& B~~~ = O | BEemulationconsole ZXW I

ESE532 Fall 2020

(h) From the Assistant view, double click on Hardware as follows:

vitis_workspace - bloom/bloom.prj - V|

File Edit sSearch xilinx Project Window Help

i BrA~- -0~ IJ- D@ T O~ -
~. Explorer 231 S e Y = O & bloom_system [?t bloom 2@1 [€ main.cpp
¥ [> bloom_system [ese532_code master] [ese532_hw6_pfm] % Application Project Settings
~ 2 >bloom [ese532_code master] [linux on psu_cortexa53]
b @& Includes General Option
s ;
b G > Emulation-HwW Project name: bloom Target
b 2 > Emulation-sw l
.
b &£ > Hardware Platform ese532 hwé pfm Host d
- &5 =src Runtime: OpenCL Kernel
b [common.h L Kernel
Mumber of devices: | 1
b [compute_score_fpga_kernel.cpp Repor
=
» [compute_score_host.cpp Hardw
b [# hls_stream_utils.h
b
b & main.cpp Hardware Functions
» [MurmurHash2.c
b [sizes.h Mame Compute Units Port Data Width
b [xcl2.cpp ~ = runOnfpga_hw
b [# xclz.hpp # runonfpga 1 Auto
*4 bloom.prj
% bloom_system.sprj
\JAssistantEZ} = BR/ROHF ¥ = 0B W
+ = bloom_system [System]
~ £} bloom [Embedded OpencL]
» 4 Emulation-SW [Software Emulation]
“ Egg H J o tion]
» . Hardware [Hardware]
& Console 2@1[::‘ Problems [E] Vitis Log (7) Guidance 4 ¢8| B EE
Build Console [bloom_system, Emulation-Sw]

ESE532 Fall 2020

(i) Click on Hardware—runOnfpga_hw—runOnfpga. This brings the screen where
you can specify the number of compute units, compiler options for the kernel,
assign different ports to inputs etc. Keep the defaults for now:

Hardware Function Settings 5 ®

typefitert... @ | & # mnoufpga GvDv v
~ “bloom_system Name: runonfpga
~ @ bloom
» @ Emulation-sw Compute units: +

< 8
» < Emulation-HW e mem ory ports:

v < Hardware X
- & runonfpga hw POrtdata width: Auto v

UL extra source fles:

V++ compiler options:

Compute Unit Settings

Name Memory SLR ChipScope Debug Protocol Checker Data Transfer Execute Profiling Stall Profiling
~ # runOnfpga Auto Auto L] [] None L] L]
~ Bfrunonfpga_1 Auto Auto [m] o None o o
<output_flags Auto O u] None
“=input_words Auto [m] o None
<bloom filer Auto O u] None:
< total size O
< load_filter o

Refresh

V++ Compiler Command Line

S(XILINK_VITIS]/bin/vi+
——tar

ile.of
" ../stc/compute_score_fpga kernel.cpp"

Revert Apply

Cancel Applyand Close

10

ESE532 Fall 2020

(j) Click on bloom.prj. Check out the Hardware optimization option where you
can change the optimization level for the hardware function. Additionally, recall
from P2 that you can change the optimization level of the host code from the

C/C++ build settings. Now click on the build button on the menu bar to start
compilation:

vitis_workspace - bloom/bloom.prj

File Edit Search Xilinx Project Window Help

ahd f-a-J-0-s- D@ CE-D - Quick Access || [Z Design 45 Debug
S
. Explorer m} B % ¥ = O [&bloom system (az bloom xﬂmain.npp [& compute_score_fpga_kernel.cpp = O || outline x} =8
~ [> bloom system [eses32 code master][eses32_hws pfm] || ¢ Application Project Settings Active build configuration:| Hardware v | ||Anoutlineisnotavailable.
~ &} >bloom [eses32_code master] [linuxon psu_cortexas3]
» @l Includes General Options
» &7 > Emulation-Hw Project name: bloom Target: Hardware
» ¢ > Emulation-sw
: :
} 2 - Hardware Platform: ese532 hwé pfm Host debug: O
v @l osic Runtime: OpencL Kernel debug
» [common.h umber of devices Kernel debug mode T
» [£ compute_score_fpga_kernel.cop Report level: Default ~
» I ?
[’ mmpute_smr.e_host:pp Hardware optimigl >
» [his_stream_utils.h
» £ maincpp Hardware Functions B Y.
» [MurmurHash2.c
» [sizesh Name Compute Units Port Data Width Max Memory Ports
b [xel2.cpp ~ = runOnfpga_hw
» [xcl2.hpp 7 runOnfpga 1 Auto -
% bloom.prj
2 bloom_system.sprj
dAssistantzﬂ EE®{80% Y =08
~ & bloom_system [system]
v i} bloom [Embedded OpencL]
» < Emulation-Sw [Software Emulation]
» < EmulationHW [Hardware Emulation]
» < Hardware [Hardware]
@ Console 1 |2 Problems [vitistog Qcuidence & (% @R - % = B~ = O | @emubtioncomsole | RiE v =@
Build Console [bloom, Hardware]

11

ESE532 Fall 2020

(k) Once the compilation completes, open the Hardware folder from the Explorer.
The binaries are in the package/sd_card folder.

File Edit Search Xilinx Project Window Help
H=n SR B 0 I DIW D

~. Explorer 5:3] B S e ¥ = O & bloom_system [ﬂ bloom 5:3] [€] main.cpp [€ comput

~ [5%] >bloom_system [ese532_code master] [ese532_hwé_pfm] % Application Project Settings
+ {3 >bloom [ese532_code master] [linux on psu_cortexas53]

b @ Includes General

b 5 > Emulation-HW

Project name: bloom
b 5 = Emulation-SW
+ &% Hardware Platform: ese532 hwé pfm
~ £ package Runtime: OpenCL
Number of devices: | 1
= bloom
=/ BOOT.BIN
=l boot.scr
El image.ub Hardware Functions
2 init.sh
= platform_desc.txt Name Compute Units Port Data Wi
[runonfpga_hw.xclbin ~ = runOnfpga_hw
=l BOOT.BIN
= ese532_hw6_pfm.bif
[sd_card.img

» =% package.build
b 2 runOnfooa hw build

\lAssistantB@W =] /R0 ¥ = B

~ =¥ bloom_system [System]
+ {ak bloom [Embedded OpencL]
b = Emulation-SW [Software Emulation]
» = Emulation-HW [Hardware Emulation]

b 2\ Hardware [Hardware]

£ Console E@WL:-::' Problems [vitis Log (i) Guidance .

Build Console [bloom, Hardware]
T4ARHYR4AYA PvTes 11 5 LR T 4 AT ronted 5 44171 =

12

ESE532 Fall 2020

(1) Copy the binaries and the xrt.ini to the Ultra96 as follows and then reboot the
Ultra96.

platform_ runOnfpg
desc.tx

a_ system.dtb
txt hw.xclbin

lilbirb@stingy: /media/lilbirb/research/code/eses532_code/vitis_workspace/bloom/Hardware/package/sd_card

$ scp BOOT.BIN boot.scr
root@10.10.7.1's password:

root@1e.16.7.1: /mnt/sd-mmcblkop1/

7KB 38.0MB/s
731.6KB/s
8117KB 33.0MB/s

00:00
00:00
00:00
1bin root@10.10.7.1:~/

100% 1045KB 4.5MB/s
100% 5468KB 43.2MB/s

00:00
00:00

(m) Run the code using the following commands in the Ultra96:

ifconfig ethO 10.10.7.1 netmask 255.0.0.0
export XILINX_XRT=/usr
./bloom 40000 64

You should see the following output in the terminal:

rootQultra96v2-2020-1:~# ./bloom 40000 64
Initializing data

Creating documents - total size
Creating profile weights

: 559.858 MBytes (139964416 words)

[1018.547572] [drm]
[1018.551450] [drm]
[1018.558627] [drm]
Loading runOnfpga_hw.

Pid 769 opened device
Pid 769 closed device
Pid 769 opened device
xclbin

[1018.617733] [drm]
[1018.617765] [drm]
[1018.633496] [drm]

zocl_xclbin_read_axlf The XCLBIN already loaded
zocl_xclbin_read_axlf 3c650f2f-9cc2-408a-8c92-0ec3
bitstream 3c650f2f-9cc2-408a-8c92-0ec3bc335ce3 loc
[1018.641197] [drm] Reconfiguration not supported

[1018.652995] [drm] bitstream 3c650f2f-9cc2-408a-8c92-0ec3bc335ce3 unl
Processing 559.858 MBytes of data

Splitting data in 64 sub-buffers of 8.748 MBytes for FPGA processing

[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate

13

ESEb532

[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
waiting. ..
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
waiting. ..
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
waiting. ..

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

14

migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate

migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate

migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate

Fall 2020

ESE532 Fall 2020

Executed FPGA accelerated version | 1414.5707 ms (FPGA 247.878 ms
Executed Software-Only version | 11779.4325 ms

Verification: PASS

(n) The verbose outputs in the terminal is caused by the call set_callback(flagDone,
"oooqueue") ; in the host code. This is a helper function in xc12.hpp that prints
out the state of an OpenCL event. You can use it to debug OpenCL calls. In ad-
dition, you can also use the 0CL_CHECK macro from xc12.hpp to see if an OpenCL
call succeeded.

(o) Copy the generated run summary and csv files to your host computer and open

vitis analyzer. You can see overlap of kernel execution with data transfer and
OpenCL API calls.

P kernel.xclbin (System Run) X

summary % | Application Tmeline ~ x >
-

Q @ Qa N o+ MM o= o 4T

20, 775,505 1S ~

Name Value 20, 765. 000000 ms |20, 770. 000000 ms |20, 775. peEO00 0 20, 780. g00000 ns

“ Host
~ Open CL API Calls
General 0 clSetKerneltrg [
General 1 INACTIVE
Queus; 5509368780 INACTIVE
* Data Transfer

—

ﬁ
J

~ Read

Fow 0 m = =

~ Write

Row 0 o

Row 1

 Kernel Enqueuses 3 1
Row 0 runonfpga

Row 1 runonfpga

runOnfpga runOnfpga

rURONTPaa TUnOnTpaa

Row 2 runonfpga Tunon tpaa
o
Row 4
Row 5

Row 6

Row 7

Row 8

Row 9

Row 10
Row 11
Row 12
Row 13
Row 14
Row 16
Row 17
Row 18
Row 19
Row 20
Row 21
Row 22
Row 23
Row 24

15

ESE532 Fall 2020

(p) If you scroll forward in the timeline, you can see overlap between computation
in the cpu and the fpga as shown below. From the output in 2m, these calls

P kernel.xclbin (System Run) x

summary % | Application Timeline

Q @ a i« Mo = o

Name Value 20, 700, 000000 ns 20, 200, 000000 ns [2¢, Se0. 000800 ns 21,000, 000000 ns 21,100, 000000 ms
PR S PR S PR S PR S R
~ Host
~ Open CL API Calls ,’ ‘\
General o mAcTIVE T TR T | | ' R S R S —

T T T
General 1 INACTIVE } HH ! ! \
Queve: S5C0388780 mACTvE 1111l A 101 S

 Data Transfer

~ Read
Row 0 "o0n000000 HHHHHHHHH
~ Write
Fow 0 R L L L
Row 1 MXOOCCO000
 Kemel Enqueues B T T il Wi ian o nnannaa aaaaa a0 anG naaNS ka2t
Row O .
Row 1
Row 2 e no. . runOnfpga
Row 3
Row 4
Row 5
Row 6 non. . . runOnfpga
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13 runOnfpga
Row 14 runOnfpga
Row 15 a runOnfpga
Row16
Fow17
Row 15
Row 19
Row 20
Row 21
Fow 22
Row 23
Row 24

correspond to the waiting... print outs. You can check in the host code, how
we wait for a c1: :Event to finish based on a condition, and when the event notifies
that it’s finished, we start executing the cpu code, so that it overlaps with the
fpga execution:

needed += size;
if (needed > available) {
clWaitForEvents(l, (const cl_event *) &flagWait[iter]);

std::cout << "waiting..." << std::endl;
available += subbuf_doc_info[iter].size / sizeof (uint);
iter++;

3

16

ESEb532

Fall 2020

(q) Now run with a different ITER value and look at the updated trace:

Host
Open CLAPI Calls
General 0
General 1

Queue: S59FB60780

Data Transfer
Rread
Row 0
‘Write
Row 0
Row 1
Kernel Enqueues
Fow 0
Row 1
Row 2
Row 3
Row 4

Device "edge-0"

Binary Containe...y_con

./bloom 40000 128

PR N L | A

value 20, 750. 000000 ns 28, 790.000000 ms

|20, 500. co0000 0

20, 816. 060000 ns 20, 520. 000000 ms

INACTIVE

INACTIVE

clEnqueustligrate HHEHHE

runOnfpaa

tainer 1°

You can see that since the kernel execution time gets smaller as you increase the
iteration number, the next kernel execution starts almost immediately.

Running a sweep on the number of iterations, we see that ITER=32 is the most

performant for this design:

./bloom 40000 8
Executed FPGA accelerated version
Executed Software-Only version

1413.3252 ms
11780.3703 ms

(FPGA 305.796 ms

Verification: PASS

./bloom 40000 16
Executed FPGA accelerated version
Executed Software-Only version

1396.5072 ms
11770.1858 ms

(FPGA 298.034 ms

Verification: PASS

./bloom 40000 32
Executed FPGA accelerated version
Executed Software-Only version

1391.2062 ms
11768.1306 ms

(FPGA 284.336 ms

Verification: PASS

./bloom 40000 64
Executed FPGA accelerated version

17

1414.5707 ms (FPGA 247.878 ms

ESE532 Fall 2020

Executed Software-Only version | 11779.4325 ms

Verification: PASS

./bloom 40000 128
Executed FPGA accelerated version | 1458.1155 ms (FPGA 179.195 ms)
Executed Software-Only version | 11782.2403 ms

Verification: PASS

./bloom 40000 256
Executed FPGA accelerated version | 1533.5603 ms (FPGA 10.701 ms)
Executed Software-Only version | 11798.4502 ms

Verification: PASS

(s) This concludes a top-down walk-through of this tutorial. To learn more about

this design, read the following in-order:

i. Overview of the Original Application

ii. Architect a Device-Accelerated Application
iii. Implementing the Kernel

iv. Data Movement Between the Host and Kernel
Note that the tutorial is written for data center cards. Some of the parameter
choices, such as port data width, DDR memory etc. should be reconsidered for the
Ultra96 to get optimal performance (refer to this paper: Unexpected Diversity:
Quantitative Memory Analysis for Zynq UltraScale+ Systems).

3. Using Multiple Compute Units

The code you will use for this section is in the vitis_tutorials/mult_compute_units
directory. The directory structure looks like this:

mult_compute_units/
host.cpp
vadd.cpp
xcl2.cpp
xcl2.hpp

The host.cpp code has the OpenCL host code. The top level HLS function is in
vadd. cpp.

(a) Create an application project as described in Tutorial 2, compile and run the
project.

(b) The system diagram in vitis analyzer looks like:

18

https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/1_overview.md
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/3_architect-the-application.md
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/4_implement-kernel.md
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Hardware_Accelerators/Design_Tutorials/02-bloom/5_data-movement.md
https://ieeexplore.ieee.org/document/8977835
https://ieeexplore.ieee.org/document/8977835

ESEb532

P kernel.xclbin (System Run) x

Summary x Application Timeline

- (o)
e a i o0

ZYNQ

HPO

<

Search: |0

Name Kernel LUT (% Used) Register (% Used) BRAM (% Used) DSP (5% Used) Calls rjovo o ;“mti'(ms) .
SEvaddl vadd 2160 (3.07%) 2773 (219%) 1(0.46%) 010.0%) WA NA /A A

Fall 2020

Profile

Calls: N/A
Utilization: N/A
Total: N/A
Average: N/A

which shows that there is one vadd kernel. The application timeline looks like:

P kernel.xclbin (System Run) x

Q @ @ W o« I T
Name Value 200, UHUD‘HU ns 360, DHUU‘UU ms ‘4DH.UUUU‘UU ms ‘SUH‘ UUUU‘UU ms ‘EUU‘ UUUH‘UD ns ‘700‘ HUDH‘UU ns ‘BHU‘ ﬂﬂﬂﬂlﬂﬂ mns ‘QHU‘ UUUUIUU ms 1,000, ﬂﬂlﬂﬂﬂﬂ ms |1.100. HUIDHU(
~ Host
~ Open CL API Calls
Ganera mactve 1 chcrestepraara;| 17| O .
Queue: 55A21ADTAD INACTIVE : = } =
~ Data Transfer
~ Read
Row 0 X0CO0C0X" I
Row 1 I
~ Write
Row 0
Row 1
 Kernel Enqueues

Row O
Row 1
Row 2
Row 3

* Device "edge-0"
~ Binary Container "kernel”

vadd

vadd

19

ESE532 Fall 2020

From the application trace, we can see that although the host scheduled all ker-
nel executions concurrently, the second, third and fourth execution requests are
delayed as there is only one compute unit on the FPGA.

(¢) Increase the number of compute units to 4 and assign separate ports by going to
the window mentioned in 2i. Compile and run the updated configuration. The
vitis analyzer system diagram would look like:

P kernel.xclbin (System Run) x

Summary X Platform Diagram X System Diagram x

e a i o0

vadd_1 Profile
in1 Calls: N/A
[Utilization: N/A
T in2 Total: N/A
et a-ut_r Average: N/A
—isize
HPO
vadd
vadd_2 Profile
._I I I I I ind Calls: N/A
" (| [Utilization: N/A
o L HP1 n2 Total: NJA
=zYna ——out_r Average: N/A
1T —size
vadd
vadd_3 Profile
._l I I I 4 inl Calls: N/A
LImnm E Utilization: N/A
HP2 fri2 Total: NJA
L out r Average: N/A
—|size
HP3 vadd_4 Profile
inl Calls: N/A
[Utilization: N/A
e Total: N/A
L— out r Average: N/A
—size
vadd

20

ESE532 Fall 2020

The application timeline looks like:

% Platform Diagram x System Diagram x| Application Timeline

Name Value 200, 080000 1S 500, 080000 ms 400, 000000 ns 500, 000000 ms 600, 620000 1S [700. 600000 ns 500} 066660 s 500,09
L L L L L L L

Host
Open CLAPI Calls
General INACTIVE
Queue: 557A2307A0 INACTIVE
Data Transfer
Read
Row 0
Row 1
Write

Row 0
Row 1
Kernel Enqueues
Row 0
Row 1
Row 2

Row 3

Device "edge-0"
Binary Container "kernel*

You can now see that the application takes advantage of the four compute units,
and that the kernel executions overlaps and executes in parallel.

(d) Look into the host code and learn how the multiple compute units are utilized:

for (int i = 0; i < num_cu; i++) {
int narg = O;

// Setting kernel arguments

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in1[i]));
OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in2[i]));
OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_output[i]));
OCL_CHECK(err, err = krnls[i].setArg(narg++, chunk_size));

// Copy input data to device global memory
OCL_CHECK(err, err = q.enqueueMigrateMemObjects({ buffer_in1[i],
buffer_in2[i] }, O /* O means from host*x/));

// Launch the kernel
OCL_CHECK(err, err = q.enqueueTask(krnls[i]));

You can see from the code that by creating an array of kernels and enqueueing
them in a loop, you can utilize the multiple compute units.

4. Streaming Kernel to Kernel Memory Mapped

The code you will use for this section is in the vitis_tutorials/streaming k2k_mm
directory. The directory structure looks like this:

21

ESE532 Fall 2020

streaming_k2k_mm/
host.cpp
krnl_stream_vadd.cpp
krnl_stream_vadd_vmult.ini
krnl_stream_vmult.cpp
xcl2.cpp
xcl2.hpp

The host.cpp code has the OpenCL host code. There are two disjoint HLS kernels:
krnl_stream vadd.cpp and krnl_stream vmult.cpp. krnl_stream vadd vmult.ini
specifies how the two kernels are connected with each other. Read about the tutorial
from here and then continue.

(a) Create an application project as described in Tutorial 2. Add the two kernels as
hardware functions, add the V++ linker option:
—--config ../src/krnl_stream_vadd_vmult.ini

vitis_workspace - streaming_k2k_mm/streaming_k2k_mm.pr] - Vitis IDE

i~ : R RS RSN =I-N FRCE-R

QuickAccess |} [2 Design |4 Debug
<. Explorer zﬂ B/%lia ¥ = O |[& streaming_kak_mm_system [%sneaming,kzk,mm zz} = 8 |z outline zz} =g
1 bloom_system & Application Project Settings Active build configuration: | Hardware ~|® |©
[> streaming_k2k_mm_system [ese532_code master] [ese532 |
£} >streaming_k2k_mm [ese532_code master] [linuxonpsu_¢|| General Options
&) Includes Project name: streaming k2k mm Target: TR
¥ > Emulation-HW ! -
- R : ofm | - :
% > Emulation-sw Platform: ese532 hwé pfm Host debug: a
%> Hardware Runtime: OpenCL
5> src
[i% host.cpp Report level: Default
% krnl_sts dd. N, P
% knl_stream_vadd.cpp Hardware optimization: Default optimization (-00)
(% krnl_stream_vmult.cpp
£ xcl2.cpp Hardware Functions G] o
[xcl2.hpp
&+ krnl_stream_vadd_vmult.ini Compute Units Port Data Width Max Memory Ports
34 streaming_k2k_mm.prj =l binary_container_1
2 streaming_k2k_mm_system.sprj krnl_stream_vadd 1 Auto u}
krnl_stream_vmult 1 Auto O
Binary Container Settings o ®
ypefiltert... ® = binary_container_1 cEo o
\‘Ass\stant&ﬁ‘ B @4 0% Y =0 fpefitert.. ® | B - - “
. . B ~ F*streaming_k2k_mm_sys
& streaming_k2k_mm_system [System] S streaming k2k Name: binary_container_1
. ~ @hstreamin mm = -
£} streaming_k2k_mm [Embedded OpencL] Y % Emul g* -
< Emulation-SW [software Emulation] - N 2 FIFO =
aszuiation] » 4 Emulation-HW
— A ——— e v+ linker optionf ig ./src/krl_stream_vadd_vmult.ini
» < Hardware [Hardware] ST o
- w v+ Linker Command LI
§{XILINX_VITIS}/bin/v++
——tazget
2dd_vmult.ini
& Console 2 |22 P o v_c r 1.xclbin® B || & Emulation Console 221 iy v =8
L binary_container_1.build/krnl_stream_vmult.xo
Build e [stred
Revert Apply
Cancel Apply and Close

22

https://xilinx.github.io/Vitis_Accel_Examples/master/html/streaming_k2k_mm.html

ESEb532

(b) Compile and run the project.

P binary_container_1.xclbin (System Run) X

The system diagram in

Summary X Application Tmeline x Platform Diagram X
a X o 0
" nn krnl_stream_vadd_1
L .
= ZYNQ -4! 1‘ inl
- - LIANRL] in2
n
Ll |
HPO
out
—size
- 7

<
Search: O

Name Kernel

B8 krnl_stream_vadd_L

krnl_stream_vadd
B8 krnl_stream_vmult 1 krnl_stream vmult = 2,176 (3.08 %)

LUT (% Used)

Register (% Used)

1,062 (1.51%) 1,507 (1.19 %)

2,544 (2.08 %)

krnl_stream_vadd

krnl_stream_vmult_1
inl
in2
out
—size

- 7
krnl_stream_vmult

cu Total Avg
BRAM (% Used) DSP (% Used) Calls (ijzation (%) Time (ms) Time (ms)
0 (0.0 %) 0 (0.0 %) NiA NiA NA NA
1(0.46 %) 3(0.83 %) A A A NFA

Fall 2020

vitis analyzer looks like:

Profile

Calls: N/A
Utilization: N/A
Total: N/A

Average: N/A

Profile

Calls: N/A
Utilization: N/A
Total: N/A
Average: N/A

which shows that the two kernels are reading from the DRAM and are also con-
nected via a stream connection. The application timeline looks like:

Q T s 4o
v P binary_container_Lxclbin (..}
- Summary
« System Diagram
« Platform Diagram
Run Guidance

Profile Summary

« Application Timeline

P binary_container_1.xclbin (System Run) x

Summary

Q @ a X =

Name
~ Host
~ Open CL API Calls
General
Queus: 55C77CATT0
~ Data Transfer
~ Read
Row 0
~ write
Row 0
Row 1
* Kernel Enqueues
Row 0
Row1

+ Device "edge-0"

x [Application Tmeline x| system

(A T

Value

cIFinish
INACTIVE

2
kn_stream vadd
knl_stream vmult

~ Binary Containe...y_container_1*

Diagram X Platform Diagram x

2, 509, 009000 ns |2, 909, 099000 ns

[2; 500, 009080 ns

|¢, 009, 000000 ns

L]

|¢;509, 000080 1

L Fini:

=h

"0x4010. .. 1"0

From the application trace, we can see that the two kernels are running concur-
rently.

5. Using Faster Clocks

(a) In Homework 6, we saw the our platform provides multiple clocks:

23

ESE532 Fall 2020

Basic Platform Information

atform ese532_hwe_pfm
File: /media/1ilbirb/research/git/avnet/petalinux/projects/ese532_hwé_pfm/export/ese532_hwé_pfm/ese532_hwé_pfm.xpfm
Description:
ese532_hwe_pfm

n

avnet.com
ULTRA96V2
ULTRAS6V2

Hardware Emulation:

FPGA Family: zynquplus

FPGA Device: xczu3eg

Board Vendor: avnet.com

Board Name: avnet.com:ultragévz:1.1
Board Part: xczu3eg-sbva484-1-1
Maximum Number of Compute Units: 60

Index: @
Clock Index: 0
Frequency: 150.000000
Clock Index: 1
Frequency: 300.000000
Clock Index: 2
Frequency: 75.000000
Clock Index: 3
Frequency: 100.000000
Clock Index: 4
Frequency: 2080.000000
H 5
400.000000
6
600.000000

57915

126868
212

360

(b) We can assign faster clocks to our kernels in Tutorial 4. You can specify them
in a configuration file and pass it in the V4++ Linker Options. Looking at the
krnl _stream vadd vmult.ini, you can see that we have assigned Clock Index 1
(300 Mhz) to the kernels:

[connectivity]
stream_connect=krnl_stream_vadd_1.out:krnl_stream_vmult_1.in2:64

[clock]
id=1:krnl_stream_vadd_1
id=1:krnl_stream_vmult_1

where the format of the specification is id=<clock index>:<compute unit name>.
You should start with a slower clock in your project so that you can meet tim-
ing easily. After you have made HLS and host code optimizations, you can try

24

ESE532 Fall 2020

increasing the clock frequency until your design fails to meet timing.

(¢) You can check if the clocks were correctly assigned by opening the vivado project
as instructed in Homework 6:

prj - /media/lilbirb/research/code /ese532_code/vitis_workspace/streaming_kzk_mm/Hardware/binary_container_1.build/link /vivado/vpl/prj/prj:xpr] - Vivado 2020.1

Ele Edt Flow Tools Reports Window Layout View Help write_bitstream Complete

=, -« B X & & p, B & 3 .3 == Default Layout v

Flow Navigator EREERE 51 0CK DESIGN - ULTRASV2 2 x

~ PROJECT MANAGER
£ settings

Add Sources

Diagram x Address Editor x 280
Q e H M © Q : + @ #, C & = DefaulView ~ 5

Language Templates ¥ Designer Assistance available. Run Block Automation

Sources

P Catalog

v IP INTEGRATOR
Create Block Design
Open Block Design di wiz 0

Generate Block Design

Design

~ SIMULATION

Run Simulation

~ RTL ANALYSIS

> Open Elaborated Design

Signals

]

~ SYNTHESIS proc_sys_reset 1

b Run Synthesis

> Open Synthesized Design

ymull|

~ IMPLEMENTATION

P Run Implementation

> Open mplemented Design

axiic_zyna_ulra_ps e 0 M AX|_HPM1_FPD T
»

I_ kenl_stream_ymult_1

~ PROGRAM AND DEBUG

¥i Generate Bitstream

Platform Interfaces | Board

> Open Hardware Manager

ago

System Ret Properties

[]
< 58

Tl Console | Messages | Log Reports Design Runs
Sustem Net. clle wiz 0 clle aira

You can see from the vivado block diagram that clock index 1 is assigned. More-
over, you can also see that an AXI Stream FIFO is connecting the two kernels.

25

