ESES32:
System-on-a-Chip Architecture

Day 12: October 13, 2021
Data Movement
(Interconnect, DMA)

& Penn
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Preclass 1

* N processors
» Each: 1 read, 10 cycle compute, 1 write
* Memory: 1 read or write per cycle

* How many processors can support
before saturate memory capacity?

Mem J

P PgPEPE
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Schedule Memory Port
12 113 [14 115 116 [17 |18 |19 |20 |21 |22 |23 |24 |25

P11 P12 P21 P22 P31 P32 P41 P42 P51 P52 P61 P62 P12 P13
write read write read write read write read write read  write read write read

P1 compute f on 2™ iteration
P2 compute f on 2™ iteration

P

Bottleneck

» Sequential access to a common
memory can become the bottleneck

Mem J

PJP§ PE PE
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Previously

* Want data in small memories
— Low latency, high bandwidth

* FPGA has many memories all over fabric

Embedded Memory in FPGA

Logic Memory
Cluster Bank

Memory
Frequency

ZU3EG (Ultra96) has 216 36Kb BRAMs
5 VH?P (Amazon F1) has 2,160 6
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Previously

* Want data in small memories

— Low latency, high bandwidth
* FPGA has many memories all over fabric
» Want C arrays in small memories

— Partitioned so can perform enough reads
(writes) in a cycle to avoid memory bottleneck
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Today

* Interconnect Infrastructure (Part 1)

* Peripherals (Part 2)

» Data Movement Threads (Part 3)

* DMA -- Direct Memory Access (Part 4)
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Message

* Need to move data

+ Often use shared interconnect to make
physical connections

» Useful to move data as separate thread
of control
— Dedicating a processor is inefficient

— Useful to have dedicated data-movement
hardware: Direct Memory Access (DMA)

P

Term: Peripheral

* “On the edge (or perhiphery) of
something”
» Peripheral device — device used to put
information onto or get information off of
a computer
—-E.g.
+ Keyboard, mouse, modem, USB flash drive, ...
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uG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

Memory and I/O Organization

* Architecture contains
— Large memories
* For density, necessary sharing
— Small memories local to compute
« For high bandwidth, low latency, low energy
— Peripherals for I/O
* Need to move data
— Among memories and I/0
* Large to small and back
* Among small
_.%.From Inputs, To Outputs 12
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How move data? Dedicated Wires?

* Abstractly, using stream links. * What might prevent us from having
» Connect stream between producer and dedicated wires between all
consumer. communicating units?

Ideally: dedicated wires
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Making Connections Model
« Cannot always be dedicated wires * Programmabile, possibly shared
—_ Programmab|e InterCOI’meCt

— Wires take up area

— Don’t always have enough traffic to
consume the bandwidth of point-to-point
wire

— May need to serialize use of resource

« E.g. one memory read per cycle
— Source or destination may be sequentialized
_on hardware 15
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Simple Realization Alternate: Crossbar

Shared Bus

* Write to bus with
address of destination

* When address match,
take value off bus

* Pros?

* Provide programmable connection
between all sources and destinations

L= M * Any destination can be connected to
any single source

e Cons?

LT

R
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Simplistic FPGA Day 8
(illustrate possibility)

» Every LUT input has a mux
» Every such mux has m=(N+l) inputs

— An input for each LUT output (N 2-LUTs)

— An input for each Circuit Input (I Circuit inputs)
» Each Circuit Output has an m-input mux

ABAC BC ABC

Crossbar

P
[ P
| P i

21

Alternate: Crossbar

Provide programmable connection
between all sources and destinations

Any destination can be connected to
any single source

EEE T
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Preclass 2

 K-input, O-output Crossbar
* How many 2-input muxes?

22
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Crossbar

* Provides high bandwidth
— Minimal blocking

+ Costs large amounts of area &

— Grows fast with inputs, outputs @

[ Pl

[P

23

General Interconnect

» Generally, want to be able to
parameterize designs

* Here: tune area-bandwidth
— Control how much bandwidth provide

24
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Mux-based Bus

Wy P P-P=P5|m

LT

P

Multiple Busses

» Think of crossbar as one bus per output
» Simple bus is one bus total
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Interconnect

» How might get design points between
bus and crossbar?

* How could reduce number
— Inputs to crossbar?
— Outputs from crossbar?

B

E&&&&
Baiooa

P

Share Crossbar Outputs

» Group set of outputs together on a bus

28
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Share Crossbar Inputs

* Group number of inputs together on an input
port to crossbar

=1

29

Delay

» Delay proportional to distance
 Pipeline bus to keep cycle time
down
— Take many cycles to travel long
distance

—...but fewer cycles when
distance small

» Sometimes call this a “'Ring”




Local Interconnect

* How many cycles from:

— PE3 to PE2
— PE3 to PE1
— PE3 to PE4

Mesh is a set
Of Horizontal
o And Vertical
A n Rings with
ji Option to switch
| HTOV
32
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» Delay Proportional to distance in 2D

enn ESE532 Fall 2021 -- DeHon

33

Hierarchical Busses

Interconnect
* Will need an infrastructure for
programmable connections
* Rich design space to tune
area-bandwidth-locality
— Will explore more P
later in course
P
P

P

35
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Peripherals
Part 2
36




Input and Output

A/D  HDMI

 Typical SoC has I/O
with external world

— Sensors g? 1085
ilinx
— Actuators UltraScale
— Keyboard/mouse, Zynq
display TRM
— Communications (p27)

« Also accessible from

interconnect
usb ethernet
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High Speed 1/O
" e e Masters and Slaves
» Two kinds of entities on interconnect
UG1085 * Master — can initiate requests
Xilinx — E.g. processor that can perform a read or
UltraScale write
Zynq
TRM + Slaves — can only respond to requests
(p27) — E.g. memory that can return the read data
from a read request
Penn ESE igure igh-Speed Serial 8 Penn ESE532 Fall 2021 -- DeHon
Simple Peripheral Model Simple Peripheral Model
* Peripherals are n_.
= M . = M
. Peripheralls are n_— usb S_la,\\/l/fst(::\:ﬁ?; dinput usb
slave devices data
— Masters can read | M — Masters can write output |l M
input data data
— Masters can write ethernet — To move data, master ethernet
output data (e.g. pro?essor) initiates
— To move data, n——_. M + Demanding n——_' M
master (e.g. A/D processor tpuch A/D
processor) initiates every data item has
n_.—' M some negative n__—— M
HDMI consequences HDMI




Timing Demands

Must read each input before overwritten

Must write each output within real-time
window

Must guarantee processor scheduled to
service each I/O at appropriate frequency
How many cycles between 32b input words
for 1Gb/s network and 32b, 1GHz processor?
— Consider input data shifted into register 1b per ns
— Must read out 32b register before overwritten

43
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Refine Model
Give each n___@
peripheral local
FIFO —
Processor must still n—'@
move data — "~ ethernet
How does this n—-"@
change L — <] AD
requirements and n_.
impact?

= HDMI
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Long Latency Memory
Operations

Part 3

45

nn ES

Day 3

+ Large memories are slow
— Latency increases with memory size

+ Distant memories are high latency
— Multiple clock-cycles to cross chip
— Off-chip memories even higher latency

46
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Day 3, Preclass 2

* 10 cycle latency to memory

« If must wait for data return, latency can
degrade throughput

* 10 cycle latency + 10 op + (assorted)
— More than 20 cycles / result
for(i=0;i<MAX;i++) {
in=a[i]; // memory read
out=f(in); // 10 cycle compute
bl[i]l=out;

P1:
P2:

nn ESE

Preclass 3

* Throughput using 3 threads on 3
processors: P1, P2, P3?

for(i=0;i<MAX;i++) Astream.write(al[il);
while(1) {Astream.read(aval); Bstream.write(f(aval));}
for(i=0;i<MAX;i++) Bstream.read(b[i]);

48
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Fetch (Write) Threads

Potentially useful to move data in
separate thread

Especially when

— Long (potentially variable) latency to data
source (memory)

 Useful to split request/response

49
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Preclass 4a
P1: for(i=0;i<MAX;i++) Astream.write(al[il);

WriteAstart  NeWAII2A] yionsiop

‘ ‘ FIFO_Has_Space
ReadAddress[24]
- L
ReadRequest Counter Register o Wi
—_—
ﬂ, incr_cntr L =
DataPresent FIFO_Dataln[32]

int *p;
P1: for(p=%(a[0]);p<&(a[MAX]);p++) Astream.write(*p);
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Preclass 4
* How much hardware? . &H S
i ‘ ‘ FIFO_Has_Space
a Counter bItS? ReadAddress[24] PRk
— Registers? Faafoqa | R
— Comparators?  oasesen | FIF0_Datant2

— Control Logic gates? (4cd)

» Compare to MicroBlaze
—small RISC Processor optimized for Xilinx
= minimum config 630 6-LUTs 53
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DMA
Part 4

Direct Memory Access

I ) 50
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Preclass 4a
P1: for(i=0;i<MAX;i++) Astream.write(a[il);
&a &(a[MAX])
) WriteAstart  NeWAIIT24] st
p=&(ali) ) I
FIFO_Has_Space

p++

Counter

-
ReadAddress[24]

- Register T EeA v
ReadRequest FIFO_Write Astream
ali] Data[32]

B —
DataPresent

incr_cntr =

FIFO_Dataln(32]

int *p;
P1: for(p=%(al0]);p<&(a[MAX]);p++) Astream.write(*p);

52
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Observe

* Modest hardware can serve as data
movement thread

— Much less hardware than a processor
— Offload work from processors

+ Small hardware allow peripherals to be
master devices on interconnect

54
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DMA

Direct Memory

Access (DMA) usb
“Direct” — inputs
(and outputs) don’t ethernet

have to be indirectly
handled by the
processor between
memory and 1/O

l«— A/D

L1

DMA
Direct Memory 1M
Access (DMA) usb
Peripheral as
Master ethernet

— Can write directly
into (read from)
memory

— Saves processor

le—— A/D

L.

from copying L~ M
— Reduces demand to
schedule processor HDMI
1 coen - 10, SEVICE 56

« 1/O unit directly 1M
reads/write memory HDMI
ESES 21 -- DeHon 55
DMA Engine

Data Movement Thread

— Specialized Processor that moves data
Act independently (hence thread)
Implement data movement

Can build to move data between
memories (Slave devices)

E.g., Implement P1, P3 in Preclass 3

57
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DMA Engine
P Sl
n_._— " ethernet
n_._— " A/D

—~ M
EE_. HDMI

58
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Programmable DMA Engine

What copy from?
How much?
Where copy to?
Stride?

What size data?
Loop?

Transfer Rate?

59
DeHon
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Multithreaded DMA Engine

One copy task not necessarily saturate
bandwidth of DMA Engine

Share engine performing many
transfers (channels)

Separate transfer state for each
— Hence thread (or channel)

Swap among threads

— Simplest: round-robin:
21,23 .K1,2,3 K1, ... 60
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Programmable SoC

UG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

61
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Example
* Networking Application

* Header on processor

» Payload (encrypt, checksum) on FPGA

* DMA from ethernet->main memory

+ DMA main memory—>BRAM

» Stream between payload components

+ .DMA from chksum to ethernet out 63

Penn ESE53.
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Hardwired and Programmable

* Zynq has hardwired DMA engine
— 8 channels

* Also build data movement engines
(Data Movers) in FPGA fabric

UG1085
Xilinx
UltraScale
Zynq
TRM

Ch. 10
(p519)

62
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Programmable SoC

uG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

65
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.2 AX|-lite — simpler, not burst 64

AXI
» Advanced eXtensible Interface
— Originally developed by ARM
— On-chip communication bus standard
— Particular communication protocol
* Full AXI
— Read/write operations with bursts
* Burst = single address + length
—Large, contiguous block of memory
— Separate send/receive data channels

» AXI-S — for streaming connections

Programmable SoC

. 1 S M Y S
s Width bk T 64-bit 280
AXI Channels|
Programmable 128b wide
Logic ‘ vcu | ‘ RF H PCle v3.1 | [ 100Gb ‘ @ 333 MHz
PL SysMon 2-way Cache Non-Coherent =5.3GB/s
Coherent Master Master
1/0 Coherent BRAM
S_AXLLPD Master (slave)
B> M_axi_npmo LD Separate
ia P oo Data in
5 g&g 8 g8 g g 2| Dataout
S_AXLACP_FPD O O o o o é % Paths
S_AXI_ACE_FPD g g S =% = 3‘ fil
> > x x
S5 s 5 53 2 3 3] 53GB/s
e e e e = Each way
remery 89 5 88 8 g4
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s Width

Programmable SoC

M s

n ESE53

DMA in Vitis
Vitis/OpenCL demands that we write

code to perform DMA of data to and
from accelerators in FPGA fabric

We will see specifics on Monday
Have some options to control

— With pragmas

— With choice of data and burst sizes
— Explore HW6

68
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AXI Channels
Programmable [veu |[ re ][ Pcreva ][ 1006b | 128b wide
Logic : @333 MHz
PL SysMon 2-way Cache Non-Coherent =5.3GB/s
Coherent Master Master Per direction
1/0 Coherent BRAM Per channel
S_AXI_LPD | fyosinh | | (elove) |
B —»] ™m_aAxi_HPmO_tPD S_actas
i o o g g | master for PLJ
= EE £ £8 8 o ] (comnectsto
smaceo 83 ¢ g ¢ 22| slaveports
I I ES I I ES (] .
SAXLACEFPD X X 2 2% = g | inPS)
- < él < él él < 33
PR W da s s
—— e —— 1 M_asglave
Cosiohr 1 =’| 2’| é| ._,»| s’| s| u for PL

Need to move data

Shared Interconnect to make physical
connections — can tune area/bw/locality
Useful to

— move data as separate thread of control

— Have dedicated data-movement hardware:
DMA

69

P

Admin

Feedback

HWS

— Due today

Fall break: Thursday Friday
HW6

—Out

— Due next Friday (10/22)

70
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