ESES32:
System-on-a-Chip Architecture

Day 12: October 13, 2021
Data Movement
(Interconnect, DMA)

& Penn

P

Preclass 1

* N processors
» Each: 1 read, 10 cycle compute, 1 write
* Memory: 1 read or write per cycle

* How many processors can support
before saturate memory capacity?

Mem J

P PgPEPE

nn ESE532 Fall 2021 -- DeHon

Schedule Memory Port
12 113 [14 115 116 [17 |18 |19 |20 |21 |22 |23 |24 |25

P11 P12 P21 P22 P31 P32 P41 P42 P51 P52 P61 P62 P12 P13
write read write read write read write read write read write read write read

P1 compute f on 2™ iteration
P2 compute f on 2™ iteration

P

Bottleneck

» Sequential access to a common
memory can become the bottleneck

Mem J

PJP§ PE PE

nn ESE532 Fall 2021 -- DeHon

Previously

* Want data in small memories
— Low latency, high bandwidth

* FPGA has many memories all over fabric

Embedded Memory in FPGA

Logic Memory
Cluster Bank

Memory
Frequency

ZU3EG (Ultra96) has 216 36Kb BRAMs
5 VH?P (Amazon F1) has 2,160 6

SE532 Fall 20;

Previously

* Want data in small memories

— Low latency, high bandwidth
* FPGA has many memories all over fabric
» Want C arrays in small memories

— Partitioned so can perform enough reads
(writes) in a cycle to avoid memory bottleneck

nn ESE532 Fall 2021 -- DeHon

Today

* Interconnect Infrastructure (Part 1)

* Peripherals (Part 2)

» Data Movement Threads (Part 3)

* DMA -- Direct Memory Access (Part 4)

nn ESE532 Fall 2021 -- DeHon

Message

* Need to move data

+ Often use shared interconnect to make
physical connections

» Useful to move data as separate thread
of control
— Dedicating a processor is inefficient

— Useful to have dedicated data-movement
hardware: Direct Memory Access (DMA)

P

Term: Peripheral

* “On the edge (or perhiphery) of
something”
» Peripheral device — device used to put
information onto or get information off of
a computer
—-E.g.
+ Keyboard, mouse, modem, USB flash drive, ...

nn ESE532 Fall 2021 -- DeHon

uG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

Memory and I/O Organization

* Architecture contains
— Large memories
* For density, necessary sharing
— Small memories local to compute
« For high bandwidth, low latency, low energy
— Peripherals for I/O
* Need to move data
— Among memories and I/0
* Large to small and back
* Among small
_.%.From Inputs, To Outputs 12

E532F

How move data? Dedicated Wires?

* Abstractly, using stream links. * What might prevent us from having
» Connect stream between producer and dedicated wires between all
consumer. communicating units?

Ideally: dedicated wires

Penn ESE532 Fall 2021 -- DeHon

enn ESE532

Making Connections Model
« Cannot always be dedicated wires * Programmabile, possibly shared
—_ Programmab|e InterCOI’meCt

— Wires take up area

— Don’t always have enough traffic to
consume the bandwidth of point-to-point
wire

— May need to serialize use of resource

« E.g. one memory read per cycle
— Source or destination may be sequentialized
_on hardware 15

Penn ESE532 Fall 2021 -- DeHon

Simple Realization Alternate: Crossbar

Shared Bus

* Write to bus with
address of destination

* When address match,
take value off bus

* Pros?

* Provide programmable connection
between all sources and destinations

L= M * Any destination can be connected to
any single source

e Cons?

LT

R
| M enn ES 32 Fall 202 DeHon 18

Simplistic FPGA Day 8
(illustrate possibility)

» Every LUT input has a mux
» Every such mux has m=(N+l) inputs

— An input for each LUT output (N 2-LUTs)

— An input for each Circuit Input (I Circuit inputs)
» Each Circuit Output has an m-input mux

ABAC BC ABC

Crossbar

P
[P
| P i

21

Alternate: Crossbar

Provide programmable connection
between all sources and destinations

Any destination can be connected to
any single source

EEE T

Penn ESE532 Fall 2021 -- DeHon

Preclass 2

 K-input, O-output Crossbar
* How many 2-input muxes?

22

Penn ESE532 Fall 2021 -- DeHon

Crossbar

* Provides high bandwidth
— Minimal blocking

+ Costs large amounts of area &

— Grows fast with inputs, outputs @

[Pl

[P

23

General Interconnect

» Generally, want to be able to
parameterize designs

* Here: tune area-bandwidth
— Control how much bandwidth provide

24

Penn ESE532 Fall 2021 -- DeHon

Mux-based Bus

Wy P P-P=P5|m

LT

P

Multiple Busses

» Think of crossbar as one bus per output
» Simple bus is one bus total

nn ESE532 Fall 2021 -- DeHon

Interconnect

» How might get design points between
bus and crossbar?

* How could reduce number
— Inputs to crossbar?
— Outputs from crossbar?

B

E&&&&
Baiooa

P

Share Crossbar Outputs

» Group set of outputs together on a bus

28

nn ESE532 Fall 2021 -- DeHon

Share Crossbar Inputs

* Group number of inputs together on an input
port to crossbar

=1

29

Delay

» Delay proportional to distance
 Pipeline bus to keep cycle time
down
— Take many cycles to travel long
distance

—...but fewer cycles when
distance small

» Sometimes call this a “'Ring”

Local Interconnect

* How many cycles from:

— PE3 to PE2
— PE3 to PE1
— PE3 to PE4

Mesh is a set
Of Horizontal
o And Vertical
A n Rings with
ji Option to switch
| HTOV
32

nn ESE532 Fall 2021 -- DeHon

» Delay Proportional to distance in 2D

enn ESE532 Fall 2021 -- DeHon

33

Hierarchical Busses

Interconnect
* Will need an infrastructure for
programmable connections
* Rich design space to tune
area-bandwidth-locality
— Will explore more P
later in course
P
P

P

35

M —M
M — M
Penn ESE532 Fall 2021 -- DeHon 34
Peripherals
Part 2
36

Input and Output

A/D HDMI

 Typical SoC has I/O
with external world

— Sensors g? 1085
ilinx
— Actuators UltraScale
— Keyboard/mouse, Zynq
display TRM
— Communications (p27)

« Also accessible from

interconnect
usb ethernet
Penn ESE532 Fall 2021 -- DeHon Penn ESE532lk 38
High Speed 1/O
" e e Masters and Slaves
» Two kinds of entities on interconnect
UG1085 * Master — can initiate requests
Xilinx — E.g. processor that can perform a read or
UltraScale write
Zynq
TRM + Slaves — can only respond to requests
(p27) — E.g. memory that can return the read data
from a read request
Penn ESE igure igh-Speed Serial 8 Penn ESE532 Fall 2021 -- DeHon
Simple Peripheral Model Simple Peripheral Model
* Peripherals are n_.
= M . = M
. Peripheralls are n_— usb S_la,\\/l/fst(::\:ﬁ?; dinput usb
slave devices data
— Masters can read | M — Masters can write output |l M
input data data
— Masters can write ethernet — To move data, master ethernet
output data (e.g. pro?essor) initiates
— To move data, n——_. M + Demanding n——_' M
master (e.g. A/D processor tpuch A/D
processor) initiates every data item has
n_.—' M some negative n__—— M
HDMI consequences HDMI

Timing Demands

Must read each input before overwritten

Must write each output within real-time
window

Must guarantee processor scheduled to
service each I/O at appropriate frequency
How many cycles between 32b input words
for 1Gb/s network and 32b, 1GHz processor?
— Consider input data shifted into register 1b per ns
— Must read out 32b register before overwritten

43

enn ESE532 Fall 2021 -- DeHon

Refine Model
Give each n___@
peripheral local
FIFO —
Processor must still n—'@
move data — "~ ethernet
How does this n—-"@
change L — <] AD
requirements and n_.
impact?

= HDMI

Penn ESE532 Fall 2021 -- DeHon

Long Latency Memory
Operations

Part 3

45

nn ES

Day 3

+ Large memories are slow
— Latency increases with memory size

+ Distant memories are high latency
— Multiple clock-cycles to cross chip
— Off-chip memories even higher latency

46

E532 Fall 2021 -- DeHon

Day 3, Preclass 2

* 10 cycle latency to memory

« If must wait for data return, latency can
degrade throughput

* 10 cycle latency + 10 op + (assorted)
— More than 20 cycles / result
for(i=0;i<MAX;i++) {
in=a[i]; // memory read
out=f(in); // 10 cycle compute
bl[i]l=out;

P1:
P2:

nn ESE

Preclass 3

* Throughput using 3 threads on 3
processors: P1, P2, P3?

for(i=0;i<MAX;i++) Astream.write(al[il);
while(1) {Astream.read(aval); Bstream.write(f(aval));}
for(i=0;i<MAX;i++) Bstream.read(b[i]);

48

532 Fall 2021 -- DeHon

Fetch (Write) Threads

Potentially useful to move data in
separate thread

Especially when

— Long (potentially variable) latency to data
source (memory)

 Useful to split request/response

49
Penn ESE532 Fall 2021 -- DeHon

Preclass 4a
P1: for(i=0;i<MAX;i++) Astream.write(al[il);

WriteAstart NeWAII2A] yionsiop

‘ ‘ FIFO_Has_Space
ReadAddress[24]
- L
ReadRequest Counter Register o Wi
—_—
ﬂ, incr_cntr L =
DataPresent FIFO_Dataln[32]

int *p;
P1: for(p=%(a[0]);p<&(a[MAX]);p++) Astream.write(*p);

Penn ESE532 Fall 2021 -- DeHon 51
Preclass 4
* How much hardware? . &H S
i ‘ ‘ FIFO_Has_Space
a Counter bItS? ReadAddress[24] PRk
— Registers? Faafoqa | R
— Comparators? oasesen | FIF0_Datant2

— Control Logic gates? (4cd)

» Compare to MicroBlaze
—small RISC Processor optimized for Xilinx
= minimum config 630 6-LUTs 53

Penn ESE532

DMA
Part 4

Direct Memory Access

I) 50
Penn ESE532 Fall 2021 -- DeHon
Preclass 4a
P1: for(i=0;i<MAX;i++) Astream.write(a[il);
&a &(a[MAX])
) WriteAstart NeWAIIT24] st
p=&(ali)) I
FIFO_Has_Space

p++

Counter

-
ReadAddress[24]

- Register T EeA v
ReadRequest FIFO_Write Astream
ali] Data[32]

B —
DataPresent

incr_cntr =

FIFO_Dataln(32]

int *p;
P1: for(p=%(al0]);p<&(a[MAX]);p++) Astream.write(*p);

52
Penn ESE532 Fall 2021 - DeHon

Observe

* Modest hardware can serve as data
movement thread

— Much less hardware than a processor
— Offload work from processors

+ Small hardware allow peripherals to be
master devices on interconnect

54
Penn ESE532 Fall 2021 -- DeHon

DMA

Direct Memory

Access (DMA) usb
“Direct” — inputs
(and outputs) don’t ethernet

have to be indirectly
handled by the
processor between
memory and 1/O

l«— A/D

L1

DMA
Direct Memory 1M
Access (DMA) usb
Peripheral as
Master ethernet

— Can write directly
into (read from)
memory

— Saves processor

le—— A/D

L.

from copying L~ M
— Reduces demand to
schedule processor HDMI
1 coen - 10, SEVICE 56

« 1/O unit directly 1M
reads/write memory HDMI
ESES 21 -- DeHon 55
DMA Engine

Data Movement Thread

— Specialized Processor that moves data
Act independently (hence thread)
Implement data movement

Can build to move data between
memories (Slave devices)

E.g., Implement P1, P3 in Preclass 3

57
1-- DeHon

DMA Engine
P Sl
n_._— " ethernet
n_._— " A/D

—~ M
EE_. HDMI

58

nn ESE532 Fall 2021 -- DeHon

Programmable DMA Engine

What copy from?
How much?
Where copy to?
Stride?

What size data?
Loop?

Transfer Rate?

59
DeHon

E532 Fa

Multithreaded DMA Engine

One copy task not necessarily saturate
bandwidth of DMA Engine

Share engine performing many
transfers (channels)

Separate transfer state for each
— Hence thread (or channel)

Swap among threads

— Simplest: round-robin:
21,23 .K1,2,3 K1, ... 60

10

Programmable SoC

UG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

61

Penn ESE532

Example
* Networking Application

* Header on processor

» Payload (encrypt, checksum) on FPGA

* DMA from ethernet->main memory

+ DMA main memory—>BRAM

» Stream between payload components

+ .DMA from chksum to ethernet out 63

Penn ESE53.

Penn ESE532 Fall 2021 -- DeHon

Hardwired and Programmable

* Zynq has hardwired DMA engine
— 8 channels

* Also build data movement engines
(Data Movers) in FPGA fabric

UG1085
Xilinx
UltraScale
Zynq
TRM

Ch. 10
(p519)

62

Penn

Programmable SoC

uG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

65

Penn ESE532

.2 AX|-lite — simpler, not burst 64

AXI
» Advanced eXtensible Interface
— Originally developed by ARM
— On-chip communication bus standard
— Particular communication protocol
* Full AXI
— Read/write operations with bursts
* Burst = single address + length
—Large, contiguous block of memory
— Separate send/receive data channels

» AXI-S — for streaming connections

Programmable SoC

. 1 S M Y S
s Width bk T 64-bit 280
AXI Channels|
Programmable 128b wide
Logic ‘ vcu | ‘ RF H PCle v3.1 | [100Gb ‘ @ 333 MHz
PL SysMon 2-way Cache Non-Coherent =5.3GB/s
Coherent Master Master
1/0 Coherent BRAM
S_AXLLPD Master (slave)
B> M_axi_npmo LD Separate
ia P oo Data in
5 g&g 8 g8 g g 2| Dataout
S_AXLACP_FPD O O o o o é % Paths
S_AXI_ACE_FPD g g S =% = 3‘ fil
> > x x
S5 s 5 53 2 3 3] 53GB/s
e e e e = Each way
remery 89 5 88 8 g4

11

s Width

Programmable SoC

M s

n ESE53

DMA in Vitis
Vitis/OpenCL demands that we write

code to perform DMA of data to and
from accelerators in FPGA fabric

We will see specifics on Monday
Have some options to control

— With pragmas

— With choice of data and burst sizes
— Explore HW6

68

2 Fall 2021 -- DeHon

n ESE532 Fall 2021 -- D

AXI Channels
Programmable [veu |[re][Pcreva][1006b | 128b wide
Logic : @333 MHz
PL SysMon 2-way Cache Non-Coherent =5.3GB/s
Coherent Master Master Per direction
1/0 Coherent BRAM Per channel
S_AXI_LPD | fyosinh | | (elove) |
B —»] ™m_aAxi_HPmO_tPD S_actas
i o o g g | master for PLJ
= EE £ £8 8 o] (comnectsto
smaceo 83 ¢ g ¢ 22| slaveports
I I ES I I ES (] .
SAXLACEFPD X X 2 2% = g | inPS)
- < él < él él < 33
PR W da s s
—— e —— 1 M_asglave
Cosiohr 1 =’| 2’| é| ._,»| s’| s| u for PL

Need to move data

Shared Interconnect to make physical
connections — can tune area/bw/locality
Useful to

— move data as separate thread of control

— Have dedicated data-movement hardware:
DMA

69

P

Admin

Feedback

HWS

— Due today

Fall break: Thursday Friday
HW6

—Out

— Due next Friday (10/22)

70

nn ESE532 Fall 2021 -- DeHon

12

