ESE532: System-on-a-Chip Architecture

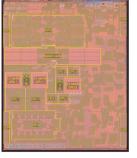
Day 1: September 1, 2010 Introduction and Overview (lecture start target 10:20am)

Note: both preclass and feedback linked to web (also slides) www.seas.upenn.edu/~ese532/fall2021/fall2021.html

- Preclass
- · Feedback form

Today

- Part 1: Case for Programmable SoC
- Part 2
 - Course Goals
 - Outcomes
 - Evovling Course, Risks, Tools
- Part 3: Sample Optimization
- · Part 4: This course
 - (incl. policies, logistics)


enn ESE532 Fall 2021 - DeHon

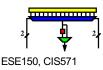
2

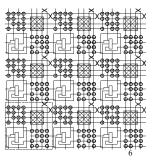
Apple A14 Bionic

- 88mm², 5nm
- 11.8 Billion Tr.
- iPhone 12
- 6 ARM cores
 - 2 fast (2.9--3GHz)
 - 4 low energy
- · 4 custom GPUs
- 16 Neural Engines
 - 11 Trillion ops/s?

Image from https://www.extremetech.com/computing/318715-comparison-of-apple-m1-a14-shows-differences-in-soc-des details: https://www.tomshardware.com/news/apple-a14-showie-revealed __https://www.wanandtech.com/nikow/10226/pipple-shilo-om-in-a14-dep-dive/2

Questions


- Why do today's SoC look like they do?
- How approach programming modern SoCs?
- How design a custom SoC?
- When building a System-on-a-Chip (SoC)
 - How much area should go into:
 - Processor cores, GPUs, FPGA logic, memory, interconnect, custom functions (which)?



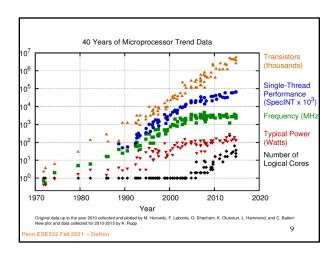
Penn ESE532 Fall 2021 -- DeHon

FPGA Field-Programmable Gate Array K-LUT (typical k=4 or 6)

Compute block w/ optional output Flip-Flop

Case for Programmable SoC

enn ESE532 Fall 2021 -- DeHon


End of uProcessor Scaling

Old

- · Moore's Law scaling delivered faster transistors
- Processors rode Moore's Law
 - Turning transistors into performance
- · Could wait and ride technology curve

ESE532 Fall 2021 -- DeHor

- Dennard's Law kicked in
- uP were burning more power
- · Lost ability to scale down voltage
- Processor performance stalled

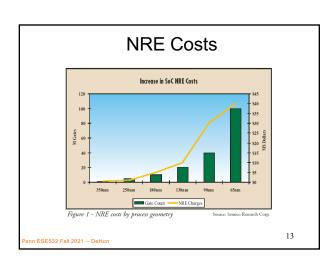
The Way things Were

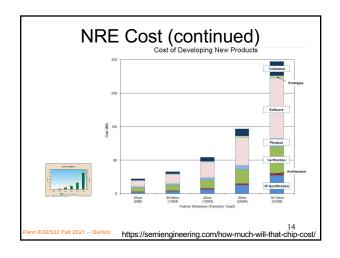
30 years ago

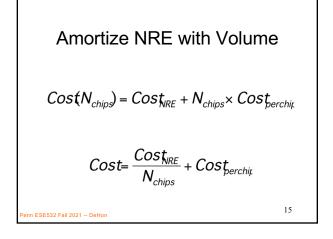
- · Wanted programmability
 - used a processor
- Wanted it a little faster
 - Next year's processor would run faster...
- Wanted high-throughput
 - used a custom IC
- · Wanted product differentiation
 - Got it at the board level
 - Select which ICs and how wired
- Build a custom IC

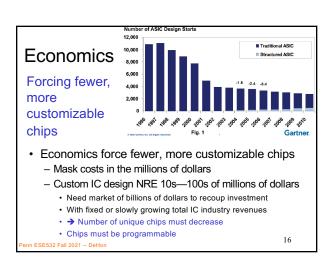
- It was about gates and logic

- Today
 Microprocessor may not be fast enough
 - (but often it is)
 - Or low enough energy
- · Single core processor scaling has ended
- · Time and Cost of a custom IC is too high
 - \$100M's of dollars for development, Years
- FPGAs promising
 - But build everything from prog. gates?
- · Premium for small part count
 - And avoid chip crossing


-- IGs with Billions of Transistors


11


Non-Recurring Engineering (NRE) Costs


- Costs spent up front on development
 - Engineering Design Time
 - Prototypes
 - Mask costs
- · Recurring Engineering
 - Costs to produce each chip

$$Cos(N_{chips}) = Cos(N_{RE} + N_{chips} \times Cos(N_{chips}))$$

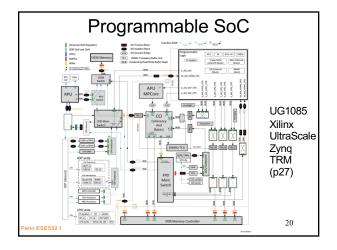
Large ICs Now contain significant software Almost all have embedded processors Must co-design SW and HW Must solve complete computing task Tasks has components with variety of needs Some don't need custom circuit 90/10 Rule

17

Given Demand for Programmable

 How do we get higher performance than a processor, while retaining programmability?

18


nn ESE532 Fall 2021 -- DeHon

Programmable SoC

• Implementation Platform for innovation

— This is what you target (avoid NRE)

— Implementation vehicle

Then and Now

30 years ago

- Programmability?use a processor
- Faster
- Processors scaled
- High-throughput
 used a custom IC
- Wanted product differentiation
 - board level
 - Select & wired IC
- Build a custom IC
 - It was about gates and logic

Penn ESE532 Fall 2021 - DeHon

Today

- · Programmability?
 - uP, FPGA, GPU, PSoC
- Faster
 - Can't get with single core
- High-throughput
 - FPGA, GPU, PSoC, custom
- Wanted product differentiation
 - Program FPGAs, PSoC
- · Build a custom IC
 - System and software 21

Part 2: Course Goals, Outcomes

Penn ESE532 Fall 2021 -- DeHon

22

Goals

- · Create Computer Engineers
 - SW/HW divide is wrong, outdated
 - Computer engineers understand computation
 - HW and SW are just tools and design options
 - Parallelism, data movement, resource management, abstractions
 - Cannot build a chip without software
- SoC user know how to exploit
- SoC designer architecture space, hw/sw codesign
- · Project experience design and optimization

Roles

- PhD Qualifier
 - One broad Computer Engineering
- CMPE Concurrency
- · Hands-on Project course

enn ESE532 Fall 2021 -- DeHon

24

Outcomes

- Design, optimize, and program a modern System-on-a-Chip.
- Analyze, identify bottlenecks, design-space
 Modeling → write equations to estimate
- · Decompose into parallel components
- · Characterize and develop real-time solutions
- Implement both hardware and software solutions
- Formulate hardware/software tradeoffs, and perform hardware/software codesign 25

Outcomes

- Understand the system on a chip from gates to application software, including:
 - on-chip memories and communication networks, I/O interfacing, design of accelerators, processors, firmware and OS/infrastructure software.
- Understand and estimate key design metrics and requirements including:
 - area, latency, throughput, energy, power, predictability, and reliability.

Evolving Course

- Spring 2017 first offering
 - Raw, all assignments new, buggy, too tedious, long
- Fall 2017 second offering
 - Refine assignments, project; increased explicit modeling emphasis
- Hard, not insane
- Fall 2018 third offering (similar 2017)
- Added real-time ethernet data handling; project groups of 3
- Many students challenged with C and software engineering
- Stream debug and performance challenging
- Fall 2019 fourth (structure same)
 - Try front-load more C, better introduce Stream optimization and debug
 - Group writeup on projects

nn ESE532 Fall 2021 - DeHor

27

Evolving Course

- Fall 2018 third offering (similar 2017)
 - Added real-time ethernet data handling; project groups of 3
 - Many students challenged with C and software engineering
 - Stream debug and performance challenging
- Fall 2019 fourth (structure same)
 - Try front-load more C, better introduce Stream optimization and debug
 - Group writeup on projects
- Fall 2020 fifth (structure same)
 - Move to Vitis (from SDSoC)
 - Use Amazon cloud for first half; F1 instance for FPGA access HW
 - Then transition to Ultra96 (SoC FPGA) for projects
- Fall 2021 sixth
 - Stay with Vitis; use DFX (see next slide)
 - Ultra96: no Amazon cloud
 - Introduce project components earlier

28

Tools

- Are complex
- · Will be challenging, but good for you to build confidence can understand and master
- · Tool runtimes can be long
 - Maybe DFX will help
 - DFX Dynamic Function Exchange
 - · Partial reconfiguration
- Learning and sharing experience will be part of assignments

29

Distinction

CIS240, 371, 471, 571

- · Best Effort Computing
- Run as fast as you can
- · Binary compatible
- · ISA separation
- · Shared memory parallelism

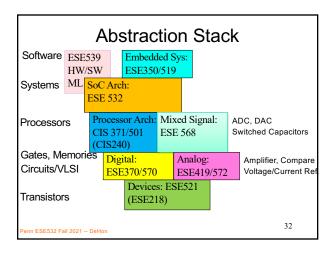
ESE532

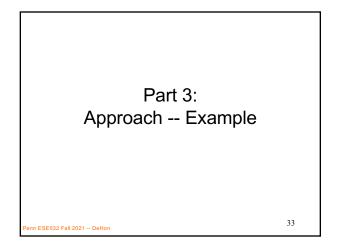
- · Hardware-Software codesign
 - Willing to recompile, maybe rewrite code
 - Define/refine hardware
- Real-Time
 - Guarantee meet deadline
- Non shared-memory parallelism models

nn ESE532 Fall 2021 -- DeHon

30

Distinction

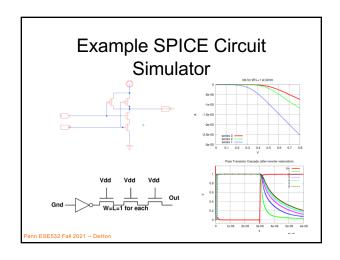

ESE539:

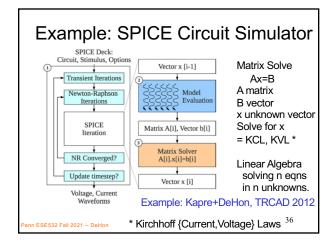

Hardware/Software Co-Design for Machine Learning

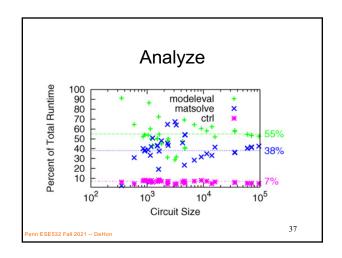
- Deep on Application (ML)
- More accessible to CS
 - Less previous experience with circuits and architecture
- Won't be as deep on understanding HW and optimization
- Program in Pytorch, OpenCL

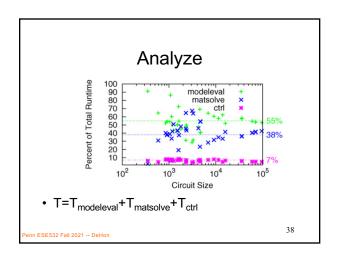
ESE532:

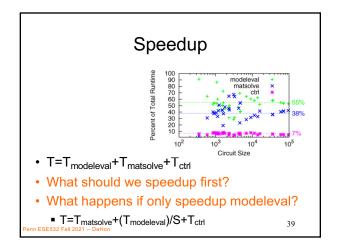
- · Deep computer engineering
- · Broad application
- Program in C
- · Suitable followup if want to dig deeper

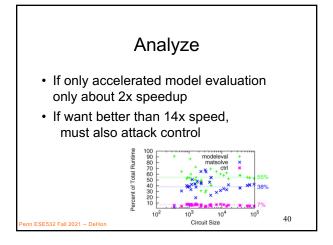


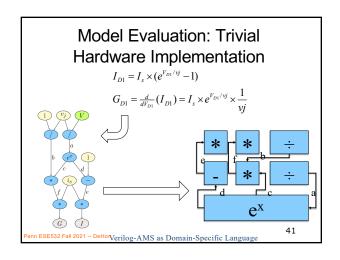


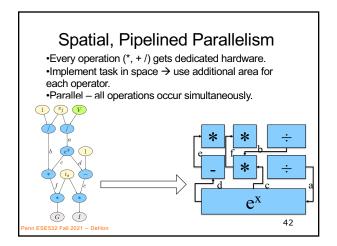

Abstract Approach

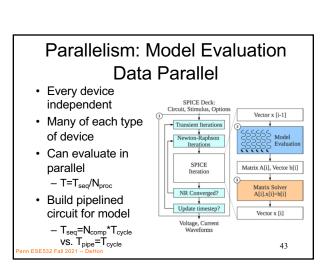

- · Identify requirements, bottlenecks
- Decompose Parallel Opportunities
 - At extreme, how parallel could make it?
 - What forms of parallelism exist?
 - Thread-level, data parallel, instruction-level
- · Design space of mapping
 - Choices of where to map, area-time tradeoffs
- · Map, analyze, refine
 - Write equations to understand, predict

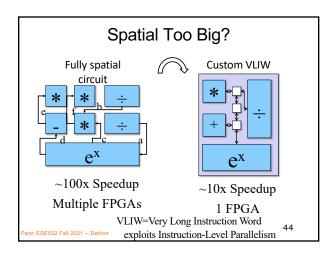

Penn ESE532 Fall 2021 -- DeHon

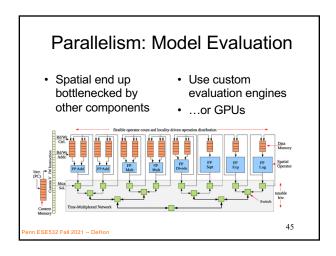


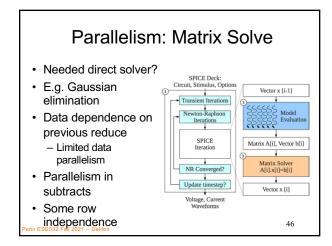


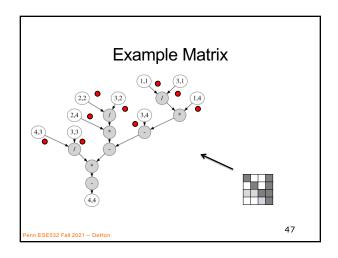


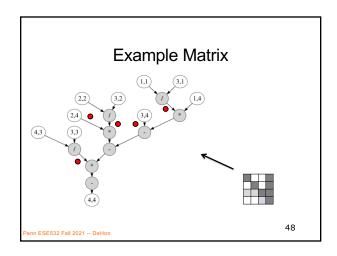


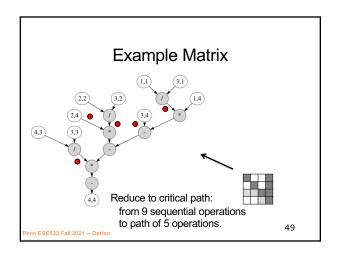


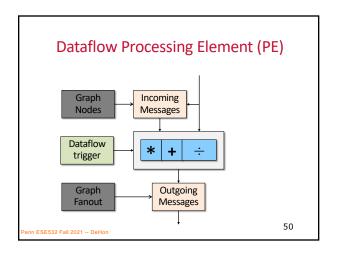




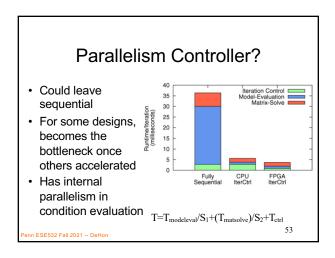


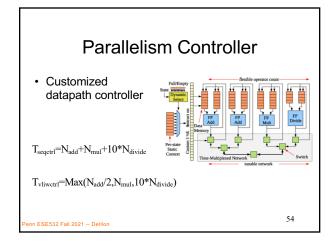


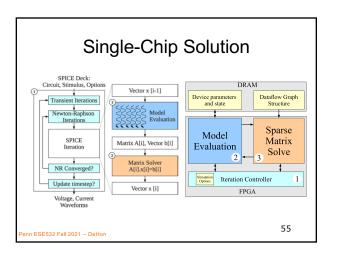


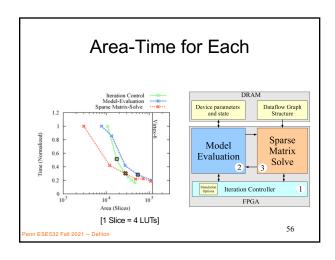


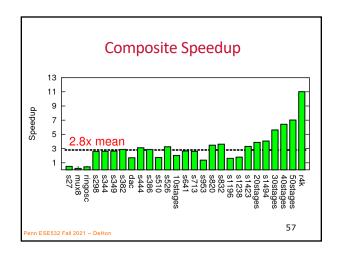


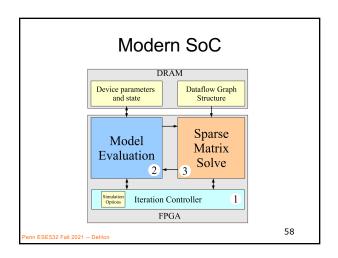


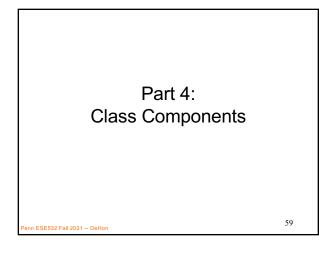


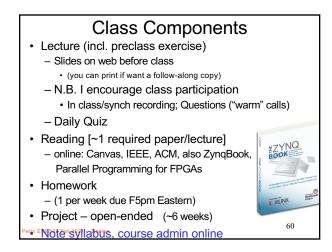


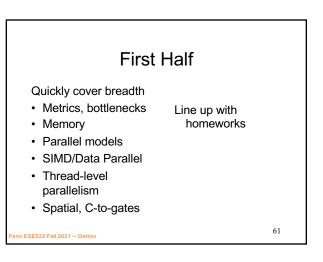



Parallelism: Matrix Solve Settled on constructing dataflow graph Graph can be iteration independent Statically scheduled (cheaper) This is bottleneck to further acceleration Statically 2021 - DaHon









Second Half

- Use everything on project
- Schedule more tentative
 - Adjust as experience and project demands
- · Going deeper
- · Real-time
- Reactive
- Memory
- · Networking
- Energy
- · Scaling
- · Chip Cost
- Verification

enn ESE532 Fall 2021 -- DeHon

62

Teaming

- HW in Groups of 2
- · HW: we assign
- · Individual assignment writeup
- · Project in Groups of 3
- · Project: you propose, we review
 - Most portions group writeup
 - Few components individual writeup

Penn ESE532 Fall 2021 -- DeHon

63

Office & Lab Hours

- Andre: T 4:15pm—5:30pm
 - Levine 270, Zoom
 - See canvas
- · TAs -- Detkin
 - Tuesday 5 pm
 - Wednesday 5 pm (not today)
 - Thursday 5—7pm (first office hours tomorrow)

Penn ESE532 Fall 2021 -- DeHon

64

C Review

- · Course will rely heavily on C
 - Program both hardware and software in C
- · HW1 has some C warmup problems
- · TAs will hold C review
 - on Sept. 7th, 5:00pm
 - (before our next class meeting since Monday 9/6 is Labor day)

Penn ESE532 Fall 2021 -- DeHon

65

Preclass Exercise

- Motivate the topic of the day
 - Introduce a problem
 - Introduce a design space, tradeoff, transform
- Available before lecture (and in lecture)
 - (only available for 24-48 hours; download)
 - Should work before lecture starts
- · Do bring/use calculator
 - Will be numerical examples

66

Diagnostic Quiz

- · Count for Engagement Points
- · Only available until next lecture
- · Incentive to keep up with material

Penn ESE532 Fall 2021 -- DeHon

Lecture Timeline

- · Preclass available before class
 - In class hardcopy circa 10:10am
- Start lecture at 10:20am
- · Lecture until 11:40am
- · (most days) stay for remaining questions
 - Pending course after us
- · Post video to canvas later in day

68

Feedback

- Will have anonymous feedback {paper, google forms) for each lecture
 - Clarity?
 - Speed?
 - Vocabulary?
 - General comments
- · Paper hardcopy for in-person
- Linked on syllabus for not in-person:

- https://forms.gle/FWdNWjCsnv6F4pGf8 69

Policies

- · Canvas turn-in of assignments
- No handwritten work
- · Due on time
 - Individual assignments only
 - 3 free late days total
- Collaboration
 - Tools allowed
 - Designs limited to project teams as specified on assignments
- See web page

70

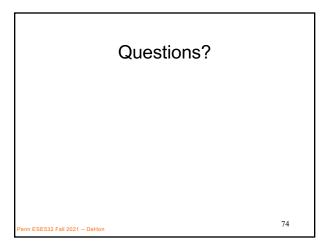
Hybrid

- · Uncertain how hybrid zoom/in-person will work
 - Setup a bit of a challenge
 - Interactive work?

71

Admin · Your action:

- Find course web page
 - · Read it, including the policies
 - Find Syllabus
 - -Find homework 1
 - Find lecture slides
 - » Will try to post before lecture
 - Find reading assignments
- Find reading for lecture 2 on canvas and web
 - · ...for this lecture if you haven't already
- Find/join piazza group for course
- Signup for detkin/ketterer access


n ESE532 Fall 2021 -- DeHon

72

Big Ideas

- Programmable Platforms
 - Key delivery vehicle for innovative computing applications
 - Reduce TTM (Time-to-Market), risk
 - More than a microprocessor
 - Heterogeneous, parallel
- · Demand hardware-software codesign
 - Soft view of hardware

Resource-aware view of parallelism

