
ESE532 Fall 2021

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2021 Midterm Solutions Wednesday, October 6

• Exam ends at 11:45am; begin as instructed (target 10:15am)
Do not open exam until instructed.

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration. All answers here.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solutions

1 2a 2b 3 4 5 6 7 8 Total

10 5 5 10 10 10 20 10 20 100

1

ESE532 Fall 2021

Consider the following (very simplified) code to localize a point based on a vector of readings.

#define REF_SOURCES 100

#define NUM_KNOWN_POINTS 200

#define NUM_NEIGHBORS 5

#include <stdlib.h>

int known_points[NUM_KNOWN_POINTS][REF_SOURCES];

int neighbor_db[NUM_KNOWN_POINTS][NUM_NEIGHBORS];

int known_points_x[NUM_KNOWN_POINTS];

int known_points_y[NUM_KNOWN_POINTS];

int distance(int *v1,int *v2) {

 int res=0;

 for (int i=0;i<REF_SOURCES;i++) // loop H

 res+=abs(v1[i]-v2[i]);

 return(res);

}

int main() {

 int source_vector[REF_SOURCES];

 int pdist[NUM_KNOWN_POINTS];

 int ndist[NUM_NEIGHBORS];

 int neighbor[NUM_NEIGHBORS];

 int mindist, minref;

 int x=0;

 int y=0;

 int old_x=0;

 int old_y=0;

 read_known_points(known_points,known_points_x,known_points_y);

 while (1) { // loop A

 read_sources(source_vector); // for simplicity assume 0

 // maybe loaded into main memory by a separate processor

 for (int i=0;i<NUM_KNOWN_POINTS;i++) // loop B

 pdist[i]=distance(known_points[i],source_vector);

 for (int i=0;i<NUM_KNOWN_POINTS;i++) { // loop C

 if (mindist>pdist[i]) {

 mindist=pdist[i];

 minref=i;

 }

 }

 for(int j=0;j<NUM_NEIGHBORS;j++) // loop D

 neighbor[j]=neighbor_db[minref][j];

 for(int j=0;j<NUM_NEIGHBORS;j++) // loop E

 ndist[j]=distance(known_points[neighbor[j]],source_vector);

 int totdist=0;

 for(int j=0;j<NUM_NEIGHBORS;j++) // loop F

 totdist=ndist[j]+totdist;

 old_x=x;

 old_y=y;

 x=0;

 y=0;;

 for(int j=0;j<NUM_NEIGHBORS;j++) { // loop G

 x+=known_points_x[neighbor[j]]*((totdist-ndist[j])/((NUM_NEIGHBORS-1)*totdist))

;

 y+=known_points_y[neighbor[j]]*((totdist-ndist[j])/((NUM_NEIGHBORS-1)*totdist))

;

 }

 int dx=x-old_x;

 int dy=y-old_y;

 write_output(x,y,dx,dy); // assume 4 writes to main memory

 }

 return(0); // won’t reach here

}

2

ESE532 Fall 2021

We start with a baseline, single processor system as shown.

32KB

P

local
scratchpad
memory

3
2

G
B

/s
1MB
Memory

• For simplicity throughout, we will treat non-memory indexing adds (subtracts count as
adds), compares, min, max, abs, divides, and multplies as the only compute operations.
We’ll assume the other operations take negligible time or can be run in parallel (ILP)
with the adds, multiplies, and memory operations. (Some consequences: You may
ignore loop and conditional overheads in processor runtime estimates; you may ignore
computations in array indecies.)

• Baseline processor can execute one multiply, divide, compare, min, max, abs, or add
per cycle and runs at 1 GHz.

• Data can be transfered from the 1MB main memory at 32 GB/s when streamed in
chunks of at least 256B. Assume for loops that only copy data can be auto converted
into streaming operations.

• Non-streamed access to the main memory takes 10 cycles.
• Baseline processor has a local scratchpad memory that holds 32KB of data. Data can

be streamed into the local scratchpad memory at 32 GB/s. Non-streamed accesses to
the local scratchpad memory take 1 cycle.

• By default, all arrays live in the main memory.
• Arrays ndist and neighbor live in local scratchpad memory.
• Assume scalar (non-array) variables can live in registers.
• Assume all additions are associative.
• Assume comparisons, adds, min, max, divide and multiplies take 1 ns when imple-

mented in hardware accelerator, so fully pipelined accelerators also run at 1 GHz. A
compare-mux operation can also be implemented in 1 ns.

• Data can be transfered to accelerator local memory at the same 32 GB/s when streamed
in chunks of at least 256B.

3

ESE532 Fall 2021

1. Simple, Single Processor Resource Bounds

Give the single processor resource bound time for compute operations and memory
access for each loop inside loop A (and non-loop code at end) and the total bound for
loop A.

loop Compute Memory

B
H: 100 x (subtract, add, abs
= 3)= 300

H: 100 x (v1[]
(known points[i]), v2[]
(source vector) = 20) 2000

200xH: 60,000 200x(H+10)(pdist[i] =
10)=402,000

C
200 x (> = 1) = 200 200x(pdist[i] = 10)=2000

D
0 5 x (neighbor[j] = 1, neigh-

bor db[minref][j] = 10) = 55
E

5xH = 1500 5x(H+ (neighbor[j], ndist[j]
= 2) = 10,010

F
5 (add = 1) = 5 5 (ndist[i] = 1) = 5

G
5x2x(+,*,-,-,*,/)=60 5x2x(kown points {x,y}[j],

neighbor[j],ndist[j] = 12) =
120

non-loop code
2 (-) 40

after G

A
61,767 414,230

4

ESE532 Fall 2021

2. Based on the simple, single processor mapping from Problem ??:

(a) What loop is the bottleneck? (circle one)

B
C
D
E
F
G

(b) What is the Amdahl’s Law speedup if you only accelerate the identified function?
474192
13992 = 33.8 ≈ 34

5

ESE532 Fall 2021

3. Parallelism in Loops

(a) Classify the following loops as data parallel or not? (loop bodies could be executed
concurrently)

(b) Explain why or why not?

Data

Loop Parallel? Why or why not?

B Y
all pdist[i] calculations independent

C N
sequential max across elements, keeping

first index with max value (could also be

reduce with cleverness)

D Y
each copy independent

E Y
all ndist[i] calculations independent

F N (Y)
Add accumulating loop iterations makes

this a reduce (we will classify separartely

later)

G N (Y)
Add accumulating loop iterations makes

this a reduce (we will classify separartely

later)

H N (Y)
Add accumulating loop iterations makes

this a reduce (we will classify separartely

later)

6

ESE532 Fall 2021

4. What is the critical path for the body of loop A?

B all distance (H) in parallel

read v1,v2 in parallel 10

sub, abs +2

associative reduce add log2(100) = 7

pdist write 10 29

C read all pdist[i] in parallel – 10

serial compare – 200 210

D all read/write parallel – 11 11

E all distance (H) in parallel

read v1, v2, sub, abs – 12

associative reduce add log2(100) = 7

ndist write parallel – 1 20

F read ndist parallel - 1

associative reduce add log2(5) = 3 4

G read neighbor[j], ndist[j], subtracts - 1

read known points x,y (also 1st multiply,

divide) - 10

final multiply - 1

associative reduce adds log2(5) = 3 15

after subtracts in parallel - 1

writes in parallel - 10 11

Total 300

7

ESE532 Fall 2021

5. Rewrite the body of loop A to minimize the memory resource bound by exploiting the
scratchpad memory and streaming memory operations.

• Annotate what arrays live in the local scratchpad

• Account for total memory usage in the local scratchpad (use provided table)

• Provide your modifications to the code.

– Use for loops that only copy data to denote the streaming operations

• Estimate the new memory resource bound for your optimized loop A.

Variable Size (Bytes)

neighbor 20

ndist 20

pdist 800

source vector 400

known points tmp 400

Put pdist and source vector in small memory; stream each known points
array into a temporary (known points tmp) in small memory be-
fore call distance.

for (int i=0;i<NUM_KNOWN_POINTS;i++) // loop B

for (int j=0;j<REF_SOURCES;j++) // streaming operation

known_points_tmp[j]=known_points[i][j];

pdist[i]=distance(known_points_tmp,source_vector);

Can also stream for ndist, but big benefit is pdist, above.

for (int i=0;i<NUM_KNOWN_POINTS;i++) // loop E

for (int j=0;j<REF_SOURCES;j++) // streaming operation

known_points_tmp[neighbor[i]]=known_points[i][j];

ndist[i]=distance(known_points_tmp,source_vector);

8

ESE532 Fall 2021

(This page intentionally left mostly blank for answers.)

loop Compute Memory

B
H: 100 x (subtract, add, abs
= 3)= 300

H: 100 x (v1[], v2[] = 2) 200

200xH: 60,000 200x(H+13+1)(stream
400/32=13, pdist[i] =
1)=42,800

C
200 x (> = 1) = 200 200x(pdist[i] = 1)=200

D
0 5 x (neighbor[j] = 1, neigh-

bor db[minref][j] = 10) = 55
E

5xH = 1500 5x(H+ (stream 400/32=13)
+ ndist[j] = 1) = 1,070

F
5 (add = 1) = 5 5 (ndist[i] = 1) = 5

G
5x2x(+,*,-,-,*,/)=60 5x2x(kown points x,y[j],

neighbor[j],ndist[j] = 12) =
120

non-loop code
2 (-) 40

after G

A
61,767 44,290

9

ESE532 Fall 2021

6. Design a pipelined accelerator for distance() that can perform distance computations
at the rate known points[i] data can be streamed to it at the maximum streaming rate
(32 GB/s). Assume the source vector input to distance() (which stays the same
throughout the B loop) can be preloaded. For the appropriate consuming processor,
assume pdist[i] outputs can be written into the associated small memory fast enough
to keep up with streaming inputs and your designed accelrator.

Hint: How many elements of known points[i] can be delivered to the accelerator per
cycle?
How many subtracts does the accelerator need to perform to keep up with this rate of
inputs?

32 GB/s = 32B/ns = 32 B per cycle; 4B per element → 8
elements per cycles → 8 substracts per cycle

abs abs abs abs abs abs abs abs

Local memory 13x256b to hold source_vector

 known_points[i] input stream at 32B/ns

10

ESE532 Fall 2021

(This page intentionally left mostly blank for answers.)

11

ESE532 Fall 2021

7. Identify concurrency opportunties between loops.

(a) which loops can run concurrently, as separate processes, to increase the through-
put for loop A

(b) which loops can run concurrently, as separate processes, to reduce the latency
for loop A (from read sources() to new values for x and y)

Throughput? Latency? Why?

B + C Y Y
Can stream pdist[i] to run loops

concurrently.

C + D Y N
Must wait for C loop to com-

plete to continue with D

D + E Y Y
can stream neighbor[j] from D

to E and run concurrently

E + F Y Y
Can stream ndist[i] to run loops

concurrently.

F + G Y N
Need totdist from F before can

start G

12

ESE532 Fall 2021

(This page intentionally left mostly blank.)

13

ESE532 Fall 2021

8. Map the Loop A computation to a system composed of one simple processor (1 GHz
as previously outlined), one fast processor (2 GHz, with everything running 2× as fast
except data transfer from main memory), and two accelerators (Problem ??). Assume
you have separate paths to the two large memory banks for each accelerator so they
can both simultaneously stream at full rate.

32KB

P

local
scratchpad
memory

3
2
G

B
/s

32KB

Fast PAccel

Accel

3
2
G

B
/s

0.5 MB Memory

0.5 MB Memory

Describe how you would map the computation onto these heterogeneous computing
resources. Describe how you would use the scratchpad memories as necessary beyond
what you’ve already answered in Problem ??. Estimate the performance your mapping
achieves in cycles per loop A iteration.

Run as pipeline with:
1st stage – B running data parallel on 2 accelerators – each ac-
celerator runs one distance in 400

32 = 13 cycles; 100 distances per
accelerator – 1300 cycles
2nd stage – C, D, E running on fast processor (compute: 1700/2)+(mem-
ory: (C: 200/2) + (D: 5/2+50)+ (E: 5*(200/2+13+1/2)))=1570
3rd stage – F, G, rest running on slow processor – 67+165=232
These run concurrently (see previous problem), so cycles per A
loop is max of these times or 1570 cycles.

14

ESE532 Fall 2021

(This page intentionally left mostly blank for answers.)

15

ESE532 Fall 2021

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a student’s performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another person’s paper, article, or computer work and
submitting it for an assignment, cloning someone else’s ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a student’s
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on one’s resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another student’s efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for one’s own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that student’s responsibility to consult with the instructor to clarify any
ambiguities.

16

