
ESE532 Fall 2021

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2021 I/O and FPGA Milestone Wednesday, November 10

Due: Friday, Nov. 19, 5:00pm

Group: All work is group work. Single turn-in for group.

1. Move some part of your design onto the FPGA for acceleration.
Writeup should identify what you moved onto the FPGA, how you validated it, and
how you tuned it. Identify the current throughput achieved.

2. Use the supplied measurement routines (Tutorial 1) to report the input throughput to
your encoder in the writeup.

3. Use the supplied measurement routines to report the maximum real-time throughput
the current design can sustain in the writeup (Notice how you can use getProfilingInfo
on cl::Event to get the kernel execution time).

4. Turn in a tar file with your FPGA accelerated code to the designated assignment
component in canvas (one per group).

5. Turn in a tar or zip file with binaries to support execution of your code to the designated
assignment component in canvas (one per group).

(a) encoder.xclbin for FPGA kernel

(b) encoder for OpenCL host code executable

(c) decoder executable configured to work with your encoded file and that can be
run on the Ultra96. (Most likely, this is just a compilation of the Decoder.cpp

we supplied; however, if you chose a different maximum block size, you may need
to change CODE LENGTH; so give us back one with that change made.)
Make sure to compile it with the aarch64-linux-gnu-g++ compiler and test it
on the Ultra96. While you could run the decoder on your host machine (which
could be Linux/Mac OS/Windows), we will run your decoder on the Ultra96.

• Your compression program (OpenCL host code) should take one argument:

– the file name where the program should store the compressed data.

Your program should assume that encoder.xclbin is in the same directory as
the host executable.

• Your compression program should start up ready to receive inputs.

We don’t expect significant FPGA acceleration on this milestone, but we do want you to
start exploring acceleration options.

1

ESE532 Fall 2021

Tutorials

1. Measuring Ethernet Throughput in the Encoder

In P2, you measured the raw ethernet throughput using iperf3 and got about 895
Mbits/s. Note that, by default iperf3 sent TCP packets to the receiver in the Ultra96,
whereas we are using UDP in the project, which is a faster protocol. We will now show
you how to measure the input throughput in your encoder.

(a) Compile the encoder code, copy the binary to the Ultra96 and run it.

(b) Download vmlinuz.tar from the Project handout. Compile the client code and
run the client with the supplied vmlinuz.tar file as follows:

./client -f vmlinuz.tar -i 10.10.7.1

(c) You should see the following output in the Ultra96 terminal:

root@ultra96v2-2020-1:~# ./encoder.elf

setting up sever...

server setup complete!

write file with 69079040

--------------- Key Throughputs ---------------

Input Throughput to Encoder: 1079.33 Mb/s. (Latency: 0.512015s).

root@ultra96v2-2020-1:~# diff vmlinuz.tar output_cpu.bin

You should see the following output in the host terminal:

filename is vmlinuz.tar

ip is set to 10.10.7.1

payload_size is 8192

bytes_read 69079040

(d) You can see that we are indeed getting about 1 Gb/s input throughput. You
can look into encoder.cpp and see that we are using a timer to measure the
total latency taken by the call: server.get_packet(input[writer]) (ignoring
the first call which waits for the first packet to arrive). Later in the code, we
calculated the throughput as follows:

float ethernet_latency = ethernet_timer.latency() / 1000.0;

float input_throughput = (bytes_written * 8 / 1000000.0) / ethernet_latency;

std::cout << "Input Throughput to Encoder: "

<< input_throughput << " Mb/s."

<< " (Latency: " << ethernet_latency << "s)."

<< std::endl;

2

ESE532 Fall 2021

(e) Note that it is very important that you verify the output using diff. You can
lose packets if your encoder cannot keep up with the input throughput, in which
case you should use the -s option in the client to transfer at a lower speed.

2. Using Multiple Compute Units

The code you will use for this section is in the vitis_tutorials/mult_compute_units
directory. The directory structure looks like this:

mult_compute_units/

host.cpp

vadd.cpp

xcl2.cpp

xcl2.hpp

The host.cpp code has the OpenCL host code. The top level HLS function is in
vadd.cpp.

(a) Create an application project, compile and run the project.

(b) The system diagram in vitis analyzer looks like:

3

ESE532 Fall 2021

which shows that there is one vadd kernel. The application timeline looks like:

4

ESE532 Fall 2021

From the application trace, we can see that although the host scheduled all ker-
nel executions concurrently, the second, third and fourth execution requests are
delayed as there is only one compute unit on the FPGA.

(c) Increase the number of compute units to 4 and assign separate ports by going to
the window mentioned in the Bloom filter tutorial on P2. Compile and run the
updated configuration. The vitis analyzer system diagram would look like:

5

ESE532 Fall 2021

The application timeline looks like:

You can now see that the application takes advantage of the four compute units,
and that the kernel executions overlaps and executes in parallel.

(d) Look into the host code and learn how the multiple compute units are utilized:

for (int i = 0; i < num_cu; i++) {

int narg = 0;

// Setting kernel arguments

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in1[i]));

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in2[i]));

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_output[i]));

OCL_CHECK(err, err = krnls[i].setArg(narg++, chunk_size));

// Copy input data to device global memory

OCL_CHECK(err, err = q.enqueueMigrateMemObjects({ buffer_in1[i],

buffer_in2[i] }, 0 /* 0 means from host*/));

// Launch the kernel

OCL_CHECK(err, err = q.enqueueTask(krnls[i]));

}

You can see from the code that by creating an array of kernels and enqueueing
them in a loop, you can utilize the multiple compute units.

3. Streaming Kernel to Kernel Memory Mapped

The code you will use for this section is in the vitis_tutorials/streaming_k2k_mm

directory. The directory structure looks like this:

6

ESE532 Fall 2021

streaming_k2k_mm/

host.cpp

krnl_stream_vadd.cpp

krnl_stream_vadd_vmult.ini

krnl_stream_vmult.cpp

xcl2.cpp

xcl2.hpp

The host.cpp code has the OpenCL host code. There are two disjoint HLS kernels:
krnl stream vadd.cpp and krnl stream vmult.cpp. krnl stream vadd vmult.ini

specifies how the two kernels are connected with each other. Read about the tutorial
from here and then continue.

(a) Create an application project. Add the two kernels as hardware functions, add
the V++ linker option:
--config ../src/krnl_stream_vadd_vmult.ini

7

https://xilinx.github.io/Vitis_Accel_Examples/master/html/streaming_k2k_mm.html

ESE532 Fall 2021

(b) Compile and run the project. The system diagram in vitis analyzer looks like:

which shows that the two kernels are reading from the DRAM and are also con-
nected via a stream connection. The application timeline looks like:

From the application trace, we can see that the two kernels are running concur-
rently.

4. Using Faster Clocks

(a) In Homework 6, we saw the our platform provides multiple clocks:

8

ESE532 Fall 2021

(b) We can assign faster clocks to our kernels in Tutorial 3. You can specify them
in a configuration file and pass it in the V++ Linker Options. Looking at the
krnl stream vadd vmult.ini, you can see that we have assigned Clock Index 1
(300 Mhz) to the kernels:

[connectivity]

stream_connect=krnl_stream_vadd_1.out:krnl_stream_vmult_1.in2:64

[clock]

id=1:krnl_stream_vadd_1

id=1:krnl_stream_vmult_1

where the format of the specification is id=<clock index>:<compute unit name>.
You should start with a slower clock in your project so that you can meet tim-
ing easily. After you have made HLS and host code optimizations, you can try

9

ESE532 Fall 2021

increasing the clock frequency until your design fails to meet timing.

(c) You can check if the clocks were correctly assigned by opening the vivado project
as instructed in Homework 6:

You can see from the vivado block diagram that clock index 1 is assigned. More-
over, you can also see that an AXI Stream FIFO is connecting the two kernels.

10

