
ESE5320 Fall 2022

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE5320, Fall 2022 Final Friday, December 16

• Exam ends at 2:00pm; begin as instructed (target 12:00pm)
Do not open exam until instructed.

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration. All answers here.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1 2a 2b 3 4 5 6a 6b 6c 7 8 Total

10 5 5 10 10 15 10 5 10 10 10 100

Average: 73, Std. Dev. 11

1

ESE5320 Fall 2022

Consider the following code to align (rotate, scale, translate) an image to best match a
reference image and identify the largest connected region that differs from the reference
(likely an object) on a real-time video stream:

#include <stdint.h>

#include <stdlib.h>

#define WIDTH 1000

#define HEIGHT 1000

#define COLORS 3

#define MASK 3

#define VPARAMS 5

#define VP_X 0

#define VP_Y 1

#define VP_XS 2

#define VP_YS 3

#define VP_ROT 4

#define XOFF 2

#define YOFF 2

#define ROT 2

#define XSCALE 2

#define XSFACT 2

#define YSCALE 2

#define YSFACT 2

#define REGION_PARAMS 4

#define XMIN 0

#define XMAX 1

#define YMIN 2

#define YMAX 3

#define NODIFF 0

#define DIFFERENT 1

#define THRESHOLD 10

uint16_t reference[HEIGHT][WIDTH][COLORS];

int16_t sintable[360]; // -1 to 1 -- scaled by 2^14

int16_t costable[360];

// treat as single cycle operations

uint16_t max(uint16_t a, uint16_t b) {if (a<b) return(b); else return(a);}

uint16_t min(uint16_t a, uint16_t b) {if (a<b) return(a); else return(b);}

void get_image(uint16_t image[HEIGHT][WIDTH][COLORS]) {

 static uint16_t image_in[HEIGHT][WIDTH][COLORS];

 for (int iy=0;iy<HEIGHT;iy++)

 for (int ix=0;ix<WIDTH;ix++)

 for (int c=0;c<COLORS;c++)

 image[iy][ix][c]=image_in[iy][ix][c];

}

void copy_viewpoint(int16_t orig[VPARAMS], int16_t copy[VPARAMS]) {

 for(int i=0;i<VPARAMS;i++) copy[i]=orig[i];

}

2

ESE5320 Fall 2022

void compute_viewpoint(uint16_t image[HEIGHT][WIDTH][COLORS],

 uint16_t reference[HEIGHT][WIDTH][COLORS],

 int16_t old[VPARAMS], int16_t current[VPARAMS]) {

 uint64_t best_score=1<<62; // large integer

 for (int rot=old[VP_ROT]-ROT;rot<=old[VP_ROT]+ROT;rot+=1) { // loop A

 int16_t sr=sintable[rot]; // result is a fraction

 int16_t cr=costable[rot];

 for (int x=old[VP_X]-XOFF;x<=old[VP_X]+XOFF;x++) // loop B

 for (int y=old[VP_Y]-YOFF;y<=old[VP_Y]+YOFF;y++) // loop C

 for (int xs=old[VP_XS]/XSCALE;xs<=old[VP_XS]*XSCALE;xs*=XSFACT) // loop D

 for (int ys=old[VP_YS]/YSCALE;ys<=old[VP_YS]*YSCALE;ys*=YSFACT) // loop E

 {

 uint64_t score=0;

 for (int iy=0;iy<HEIGHT;iy++) // loop F

 for (int ix=0;ix<WIDTH;ix++) // loop G

 {

 uint16_t tx=(((ix*cr+iy*sr)*xs)>>(14+8))+x; // 14 to scale sr, cr

 uint16_t ty=(((ix*sr+iy*cr)*ys)>>(14+8))+y; // +8 for xscale, yscale

 if ((tx>=0) && (tx<WIDTH) && (ty>=0) && (ty<HEIGHT))

 for (int c=0;c<COLORS;c++) // loop H

 score+=abs(image[iy][ix][c]-reference[ty][tx][c]);

 }

 if (score<best_score)

 {

 best_score=score;

 current[VP_ROT]=rot;

 current[VP_X]=x;

 current[VP_Y]=y;

 current[VP_XS]=xs;

 current[VP_YS]=ys;

 }

 }

 }

}

void compute_diff(uint16_t raw[HEIGHT][WIDTH][COLORS],

 uint16_t reference[HEIGHT][WIDTH][COLORS],

 int16_t current[VPARAMS],

 uint16_t difference[HEIGHT][WIDTH]) {

 int16_t rot=current[VP_ROT];

 int16_t x=current[VP_X];

 int16_t y=current[VP_Y];

 int16_t xs=current[VP_XS];

 int16_t ys=current[VP_YS];

 int16_t sr=sintable[rot]; // result is a fraction

 int16_t cr=costable[rot];

 for (int iy=0;iy<HEIGHT;iy++) // loop I

 for (int ix=0;ix<WIDTH;ix++) // loop J

 difference[iy][ix]=NODIFF; // assume this runs like streaming data copy

 for (int iy=0;iy<HEIGHT;iy++) // loop K

 for (int ix=0;ix<WIDTH;ix++) // loop L

 {

 uint16_t tx=(((ix*cr+iy*sr)*xs)>>(14+8))+x; // 14 to scale sr, cr

 uint16_t ty=(((ix*sr+iy*cr)*ys)>>(14+8))+y; // +8 for xscale, yscale

 if ((tx>=0) && (tx<WIDTH) && (ty>=0) && (ty<HEIGHT))

 {

 int diff=0;

 for (int c=0;c<COLORS;c++) // loop M

 diff+=abs(raw[ty][tx][c]-reference[ty][tx][c]);

 // should be: diff+=abs(raw[iy][ix][c]-reference[ty][tx][c]);

 if (diff>THRESHOLD)

 difference[iy][ix]=DIFFERENT;

 }

 }

}

3

ESE5320 Fall 2022

void update(uint16_t label[HEIGHT][WIDTH][REGION_PARAMS],

 uint16_t difference[HEIGHT][WIDTH], int x, int y)

{

 if (difference[y][x]==DIFFERENT)

 for (int xoff=-1;xoff<2;xoff++) // loop S

 for (int yoff=-1;yoff<1;yoff++) // loop T

 if (difference[y+yoff][x+xoff]==DIFFERENT)

 {

 label[y][x][XMIN]=min(label[y][x][XMIN],label[y+yoff][x+xoff][XMIN]);

 label[y][x][YMIN]=min(label[y][x][YMIN],label[y+yoff][x+xoff][YMIN]);

 label[y][x][XMAX]=max(label[y][x][XMAX],label[y+yoff][x+xoff][XMAX]);

 label[y][x][YMAX]=max(label[y][x][YMAX],label[y+yoff][x+xoff][YMAX]);

 }

}

void largest_region(uint16_t difference[HEIGHT][WIDTH],

 uint16_t region[REGION_PARAMS]) {

 uint16_t label[HEIGHT][WIDTH][REGION_PARAMS];

 int best_area=0;

 for (int iy=0;iy<HEIGHT;iy++) // loop N

 for (int ix=0;ix<WIDTH;ix++) // loop O

 if (difference[iy][ix]==DIFFERENT)

 {

 label[iy][ix][XMIN]=ix;

 label[iy][ix][XMAX]=ix;

 label[iy][ix][YMIN]=iy;

 label[iy][ix][YMAX]=iy;

 }

 for (int iy=0;iy<HEIGHT;iy++) // loop P

 {

 for (int ix=0;ix<WIDTH;ix++) // loop Q

 update(label,difference,iy,ix);

 for (int ix=WIDTH;ix>-1;ix--) // loop R

 update(label,difference,iy,ix);

 }

 for (int iy=0;iy<HEIGHT;iy++) // loop U

 {

 for (int ix=0;ix<WIDTH;ix++) // loop V

 {

 int area=(label[iy][ix][XMAX]-label[iy][ix][XMIN])*

 (label[iy][ix][YMAX]-label[iy][ix][YMIN]);

 if (area>best_area)

 {

 best_area=area;

 region[XMIN]=label[iy][ix][XMIN];

 region[XMAX]=label[iy][ix][XMAX];

 region[YMIN]=label[iy][ix][YMIN];

 region[YMAX]=label[iy][ix][YMAX];

 }

 }

 }

 return;

}

4

ESE5320 Fall 2022

void send_region(uint16_t region[REGION_PARAMS], int16_t current[VPARAMS],

 uint16_t image[HEIGHT][WIDTH][COLORS])

{

 static uint16_t image_out[HEIGHT][WIDTH][COLORS];

 int16_t rot=current[VP_ROT];

 int16_t x=current[VP_X];

 int16_t y=current[VP_Y];

 int16_t xs=current[VP_XS];

 int16_t ys=current[VP_YS];

 int16_t sr=sintable[rot]; // result is a fraction

 int16_t cr=costable[rot];

 int basey=region[YMIN];

 int basex=region[XMIN];

 for (int iy=basey;iy<=region[YMAX];iy++) // W

 for (int ix=basex;ix<=region[XMAX];ix++)

 {

 uint16_t tx=(((ix*cr+iy*sr)*xs)>>(14+8))+x; // 14 to scale sr, cr

 uint16_t ty=(((ix*sr+iy*cr)*ys)>>(14+8))+y; // +8 for xscale, yscale

 if ((tx>=0) && (tx<WIDTH) && (ty>=0) && (ty<HEIGHT))

 for (int c=0;c<COLORS;c++)

 image_out[iy-basey][ix-basex][c]=image[ty][tx][c];

 }

}

void extract_region() {

 uint16_t raw[HEIGHT][WIDTH][COLORS]; // uint16_t for 16b (2 byte) color per pixel

 uint16_t difference[HEIGHT][WIDTH];

 int16_t viewpoint[VPARAMS];

 int16_t old_viewpoint[VPARAMS];

 uint16_t region[REGION_PARAMS];

 get_image(raw);

 copy_viewpoint(viewpoint,old_viewpoint);

 compute_viewpoint(raw,reference,old_viewpoint,viewpoint);

 compute_diff(raw,reference,viewpoint,difference);

 largest_region(difference,region);

 send_region(region,viewpoint,raw);

}

int main() {

 while (1) { // loop Z

 extract_region();

 }

}

5

ESE5320 Fall 2022

We start with a baseline, single processor system as shown.

64KB

P

local
scratchpad
memory

16GB/s

64MB
Off−Chip
Memory

simple,
sequential
processor
core

Baseline SoC

V
id

e
o

 i
n

D
M

A
V

id
e

o
 o

u
t

D
M

A

image
input
memory

image
output
memory

• For simplicity throughout, we will treat non-memory indexing adds (subtracts count as
adds), compares, abs, shifts, max, min, and multplies as the only compute operations.
We’ll assume the other operations take negligible time or can be run in parallel (ILP)
with these compute operations and memory operations. (Some consequences: You may
ignore loop and conditional overheads in processor runtime estimates; you may ignore
computations in array indecies.)

• Baseline (simple, sequential) processor can execute one add, compare, shift, abs, max,
min, or multiply per cycle and runs at 1 GHz.

• Data can be transfered between pairs of memory (including main memory) at 16 GB/s
when streamed in chunks of at least 1000B. Assume for loops that only copy data can
be auto converted into streaming operations.

• Non-streamed access to image and 64 MB off-chip memories takes 10 cycles and can
move 8B.

• Baseline processor has a local scratchpad memory that holds 64KB of data. Data can
be streamed into the local scratchpad memory at 16 GB/s. Non-streamed accesses to
the local scratchpad memory take 1 cycle.

• Baseline processor is 1 mm2 of silicon including its 64KB local scratchpad.
• By default, all arrays live in the 64 MB off-chip memory.
• image in and image out live in the respective image input and image output memories.
• Arrays for sintable, costable, viewpoints (old viewpoint, viewpoint), and region

live in local scratchpad memory.
• Assume scalar (non-array) variables can live in registers.
• Assume all additions are associative.
• Assume comparisons, max, min, adds, and multiplies take 1 ns when implemented in

hardware accelerator, so fully pipelined accelerators also run at 1 GHz. A compare-mux
operation can also be implemented in 1 ns. Consider abs and shift free in hardware.

• Data can be transfered to accelerator local memory at the same 16 GB/s when streamed
in chunks of at least 1000B.

6

ESE5320 Fall 2022

1. Simple, Single Processor Resource Bounds

Give the single processor resource bound time for compute operations and memory
access for operations inside extract region.

routine

compute viewpoint

(compute) 53 × 32 × 10002(6× 2 + 4 + 3× 3)
(memory) 53 × 32 × 10002 × 3× 2× 10

compute diff

(compute) 10002 × (6× 2 + 4 + 3× 3 + 1)
(memory) 10002 × (3× 2 + 1)× 10

largest region

(compute) 10002 × 5× 10 + 10002 × 2× 31 + 10002 × 4
(memory) 10002 × 5 + 10002 × 2× 78× 10 + 10002 × 12× 10

send region

(compute) 10002 × (6× 2 + 4)
(memory) 10002 × 3× 2× 10

routine Compute Memory

compute viewpoint 28× 109 67.5× 109

compute diff 26× 106 70× 106

largest region 71× 106 1.73× 109

send region 16× 106 60× 106

extract region 28× 109 69× 109

Not include the logical ands (&&) in calculation above. Ok if
included in solutions.
Update is 6×5+1 = 31 compute operations and 6×(3×4+1) =
78 memory operations to large memories.

7

ESE5320 Fall 2022

2. Based on the simple, single processor mapping from Problem 1:

(a) Considering both compute and memory cycles, what routine is the bottleneck?
(circle one)

(compute viewpoint)
compute diff
largest region
send region

(b) What is the Amdahl’s Law speedup if you only accelerate the identified function?
97.623
1.973 ≈ 49

8

ESE5320 Fall 2022

3. Parallelism in Loops

(a) Classify the following loops as data parallel, reduce, or sequential?

(b) Explain why or why not?

Loop circle one Why?

A Data (Reduce) Sequential
min reduce best score

Parallel

F Data (Reduce) Sequential
sum reduce score

Parallel

K (Data Reduce Sequential
difference computed pixel by pixel

Parallel)

N (Data Reduce Sequential
independent initial assignments

Parallel)

P Data Reduce (Sequential)
row labels depend on labeling for previous

row

Parallel

Q Data Reduce (Sequential)
depends on label of previous x position

Parallel

U Data (Reduce) Sequential
max reduce over best area

Parallel

9

ESE5320 Fall 2022

4. What is the critical path (latency bound) largest region?

NO read difference (all parallel) 10

compare (all parallel) 1

assign (all parallel) 10

P read differences (all parallel) 10

initial label reads during difference

then communicate through registers

rows sequentialized (×1000)

left and right scan concurrent

Q,R scan across rows sequentialized (×1000)

XMAX, XMIN, YMAX, YMIN independent (parallel)

tight loop is max/min with previous entry in row (1)

tight loop × row scan × rows 106

final label write 10

UV read label (all parallel) 10

subtracts 1

multiply 1

reduce best area log2(106)

write region 1

Total 106 + 74

10

ESE5320 Fall 2022

(This page intentionally left mostly blank for answers.)

How tight the core in QR/update can be is tricky. At the most
conservative, read label and difference (10), reduce of 6 elements
in 3 cycles, then update label (10), for 23. The reads and writes
are avoidable if we keep in registers since the dataflow between
operations is known. The values on previous row can be reduced
ahead of the critical cycle from time (as can self and item after
it on row that isn’t changing).

Running left and right scans concurrently will require some care
right at the middle where they are updating values in close prox-
imity. That may make the middle labels take a few more cycles.
We don’t think can treat x-scan as a reduce; only took off one
point if did that.

11

ESE5320 Fall 2022

5. How would you modify compute viewpoint to minimize the memory resource bound
by exploiting the scratchpad memory and streaming memory operations.

• Annotate what arrays live in the local scratchpad.
Create new array image row to hold each row of the image.

• Account for total memory usage in the local scratchpad (use provided table).

• Describe your modifications to the code.

– Use for loops that only copy data to denote the streaming operations

Copy each row (1000 × 3 × 2B) into image row in the body
of F before starting G. All references to image[iy][ix] now
go to image row[ix].

• Estimate the new memory resource bound for your optimized compute viewpoint.

reference reads unchanged: 53 × 32 × 10002 × 3× 1× 10 =
33.75× 109

image reads now local: 53×32×10002×3×1×1 = 3.375×109

Add time to stream in row: 53×32×1000× 6000
16 = 0.421×109

(33.75 + 3.375 + 0.421)× 109 = 37.546 ≈ 38× 109

Variable Size (Bytes)

image row[WIDTH]COLORS] 6000B

12

ESE5320 Fall 2022

(This page intentionally left mostly blank for answers.)

13

ESE5320 Fall 2022

6. Considering a custom hardware accelerator implementation for loops A–H of compute viewpoint

where you are designing both the compute operators and the associated memory archi-
tecture. How would you use loop unrolling and array partitioning to achieve guaranteed
throughput of 30 frames per second while minimizing area?
Use the following area model in units of mm2:

• n-bit adder or absolute value: n× 10−5

• p-port, w-bit wide memory holding d words: w(1 + p)(d + 6)× 10−7

Make the (probably unreasonable) assumption that reads from these memories can be
completed in one cycle.

(a) Unrolling for each loop?

Start by assuming we unroll H; we need to understand how
much unrolling of the rest of the loops is required. Since the
loops are associative reduce, the inner loop can be pipelined

to II=1. 53×32×10002

A×109
≤ 1

30, giving us about 34. This suggests
unrolling about a factor of 34 beyond H will be sufficient. It
might be good to round up to something that divides 1000,
but took either.
Common Problem: Not accounting for pipelining.

Loop Unroll Factor

A 1

B 1

C 1

D 1

E 1

F 1

G 34

H 3

(b) For the unrolling, how many absolute value units, adders, and multipliers?

Absolute Value 3× 34 = 102

Adders 34(3× 2 + 2× 2) = 340

Multipliers 34× 3× 2 = 204

14

ESE5320 Fall 2022

(c) Array partitioning for each array used in local memories in the accelerator?

Note: local arrays may be ones added when optimizing memory in Question 5. If
add additional memories, describe as necessary.

Array Replicas Array Ports Width Depth

Partition per Partition

(in Width words)

old[] 1 none 1 16 10

current[] 1 none 1 16 10

sintable[] 1 none 1 16 360

costable[] 1 none 1 16 360

image[] 1 n/a

image line[] 1 cyclic 34 dim 1, x 1 48 30

complete dim 2, c

(and pack c)

reference[] 1 none 34 48 1,000,000

15

ESE5320 Fall 2022

7. Data Streaming:

(a) Can the producer and consumer operate concurrently on the same input image?
or must the consumer work on a different (earlier) input image? (“Same Image?”
column)

(b) How big (minimum size) does the buffer (or other data storage space) need to
be between the identified loops in order to allow the loops to profitably execute
concurrently?

(c) What data is being transfered in each such quanta? Identify the variable, array,
or portion of an array that is needed for the consuming loop to operate.

(Hint: Based on data dependencies, under what scenarios and granularity can the
identified loops act as a producer-consumer pair in a pipeline.)

(a) Same (b) Size (c) Data

Loop Pair Image? (bytes)

compute viewpoint N 10 viewpoint

→ compute diff

compute diff Y 2000 difference[Y] row

→largest region

largest region N 8 region

→send region

Explain size choices for partial credit consideration.

Need to process entire search in compute viewpoint before
have a new viewpoint (5×2B = 10B) to pass to compute diff.
compute diff needs the viewpoint to process any image pixels.

compute diff and largest regionprocess rows in order. So,
difference rows can be passed as completed in compute diff.
Since largest region processes rows both increasing X and de-
creasing X, it will need an entire row at a time for computation—
cannot get away with processing individual pixels as they arrive
since pixels will be coming increasing X (or, can process, but still
need to buffer for use in decreasing X pass).

Need to process entire labeling in largest region before have
a new region (4× 2B = 8B) to pass to send region.

16

ESE5320 Fall 2022

8. Assuming you start with the accelerator from Problem 6, and building on your previous
answers, what else do you need on an SoC to achieve real-time (30 frame/second)
operation for main?

• What processor(s) do you need to run the remaining code? (how many? any
particular properties)?

• If necessary, how is the remaining code divided among the processors?

• What changes (if any) are needed to memory organization and data movement?

Will need to perform stream prefetch conversion to difference
(compute diff) and difference and label (largest region) to
reduce memory time.
Setup a coarse-grained dataflow pipeline with the accelerator
and the downstream function/operations. We’ll use one or more
processors for each remaining function.
compute diff memory time saves about 9M cycles and can now
be performed by 3 processors operating data parallel.
largest region memory time roughly reduces by a factor of
10 since all memories rows are referenced in order and can be
streamed. Run xmin/ymin/xmax/ymax on separate processors.
That would bring computation down below 20M cycles each,
and memory down below 45M. It will take some additional care
to avoid redundant reads and writes in update to get memory
cycles below 13M to fit in the 33M cycle budget. Could also run
left and right scan on separate processors. So, using 8 processors
could work with less memory optimization.
largest region is tighter than it should be. Likely doable, but requires more tricks
to make work in time budget.

send region memory time roughly reduces by a factor of 10,
so send region can be performed on a single processor.

So, we are using a total of 3+4+1=8 processors (or 12 if use 8 pro-
cessors for largest region) beyond the compute viewpoint
accelerator.

17

ESE5320 Fall 2022

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a student’s performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another person’s paper, article, or computer work and
submitting it for an assignment, cloning someone else’s ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a student’s
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on one’s resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another student’s efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for one’s own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that student’s responsibility to consult with the instructor to clarify any
ambiguities.

18

