enn ESE5320 Fall 2022 -- DeHon

ESE5320:
System-on-a-Chip Architecture

Day 12: October 12, 2022
Data Movement
(Interconnect, DMA)

&Penn

Preclass 1

* N processors
» Each: 1 read, 10 cycle compute, 1 write
* Memory: 1 read or write per cycle

* How many processors can support
before saturate memory capacity?

Py Py PE P=REIEH |

Schedule Memory Port
(12 113 [14 115 |16 [17 |18 |19 [20 |21 |22 [23 24 |25 |

P11 P12 P21 P22 P31 P32 P41 P42 P51 P52 P61 P62 P12 P13
write read write read write read write read write read write read write read

P1 compute f on 2™ iteration
P2 compute f on 2 iteration

enn ESE5320 Fall 2022 -- DeHon

Bottleneck

» Sequential access to a common
memory can become the bottleneck

Py Py PE P=ERICL |

Previously

* Want data in small memories
— Low latency, high bandwidth

» FPGA has many memories all over fabric

Penn ESE5320 Fall 2022 -- DeHon

Embedded Memory in FPGA

Logic Memory Memory
Cluster Bank Frequency

ZUSBEG (Ultra96) has 216 36Kb BRAMs
s e Vl{JgP (Amazon F1) has 2,160 6

Previously

» Want data in small memories

— Low latency, high bandwidth
» FPGA has many memories all over fabric
* Want C arrays in small memories

— Partitioned so can perform enough reads
(writes) in a cycle to avoid memory bottleneck

20 Fall 2022 -- DeHon

Today

* Interconnect Infrastructure (Part 1)

* Peripherals (Part 2)

» Data Movement Threads (Part 3)

* DMA -- Direct Memory Access (Part 4)

Message

* Need to move data

» Often use shared interconnect to make
physical connections

» Useful to move data as separate thread
of control
— Dedicating a processor is inefficient

— Useful to have dedicated data-movement
hardware: Direct Memory Access (DMA)

320 Fall 2022 -- DeHon

Term: Peripheral

* “On the edge (or perhiphery) of
something”
 Peripheral device — device used to put
information onto or get information off of
a computer
—-E.g.
» Keyboard, mouse, modem, USB flash drive, ...

UG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

Penr

Memory and I/O Organization

* Architecture contains
— Large memories
« For density, necessary sharing
— Small memories local to compute
« For high bandwidth, low latency, low energy
— Peripherals for 1/0
* Need to move data
— Among memories and 1/O
« Large to small and back
* Among small

oesen eat 200 uPUES, To Quilputs 12

11

12

How move data?
 Abstractly, using stream links.

» Connect stream between producer and
consumer.

* Ideally: dedicated wires

enn ESE5320 Fall 2022 -- DeHon

13

Making Connections

» Cannot always be dedicated wires
— Programmable
— Wires take up area

— Don’t always have enough traffic to
consume the bandwidth of point-to-point
wire

— May need to serialize use of resource

 E.g. one memory read per cycle
— Source or destination may be sequentialized

amcszssor S NATdWare 15
15
Simple Realization
Shared Bus —~ M

« Write to bus with
address of destination

¢ When address match,
take value off bus

* Pros?
* Cons?

roED

Penn ESE5320 Fall 2022 -- DeHon

Dedicated Wires?

* What might prevent us from having
dedicated wires between all
communicating units?

Model

* Programmable, possibly shared
interconnect

Alternate: Crossbar

» Provide programmable connection
between all sources and destinations

» Any destination can be connected to
any single source g
P

H

P

EEE T

17

Simplistic FPGA Pays
(illustrate possibility)

» Every LUT input has a mux
» Every such mux has m=(N+l) inputs

— An input for each LUT output (N 2-LUTs)

— An input for each Circuit Input (I Circuit inputs)
» Each Circuit Output has an m-input mux

ABAC BC ABC

19

Crossbar

EN:
=&
26

21

Crossbar

* Provides high bandwidth
— Minimal blocking

+ Costs large amounts of area @
— Grows fast with inputs, outputs [Pl

. 23
Penn ESE5320 Fall 2022 -- DeHon

Alternate: Crossbar

» Provide programmable connection
between all sources and destinations

» Any destination can be connected to
any single source g

EEE T

Preclass 2

» K-input, O-output Crossbar
* How many 2-input muxes?

22

23

General Interconnect

» Generally, want to be able to
parameterize designs

* Here: tune area-bandwidth
— Control how much bandwidth provide

24

Mux-based Bus

My P P-P=P5|m

LT

Multiple Busses

» Think of crossbar as one bus per output
» Simple bus is one bus total

25

Interconnect

» How might get design points between
bus and crossbar?

* How could reduce number
— Inputs to crossbar?
— Outputs from crossbar?

BEEER
PN
i
¢
PP

]
E
[=
=

[
7

Share Crossbar Outputs

» Group set of outputs together on a bus

Share Crossbar Inputs

» Group number of inputs together on an input
port to crossbar

=1

29

Penn ESE5320 Fall 2022 --

29

28

Delay

» Delay proportional to distance
* Pipeline bus to keep cycle time
down

— Take many cycles to travel long
distance

—...but fewer cycles when
distance small

« Sometimes call this a ""Ring”

Penn ESE5320 Fall 2022 -- DeHon

30

30

Local Interconnect

* How many cycles from:
—PE3 to PE2
— PE3 to PE1
— PE3 to PE4

s
e n

. Delay Proport|onal to distance in 2D

enn ESE5320 Fall 20 - DeHo

33

33

Interconnect

* Will need an infrastructure for
programmable connections

* Rich design space to tune
area-bandwidth-locality
=]

P

[

- . 35
Penn ESE5320 Fall 2022 -- DeHon

Coming Thru Coming Thru

Mesh is a set
Of Horizontal
And Vertical
Rings with
Option to switch
HtoV

32

32
Hierarchical Busses
M — M
M — M
Penn ESE - DeHon 34
34
Peripherals
Part 2
Penn ESE DeHor 36

35

36

Input and Output

» Typical SoC has I/0

with external world

— Sensors

— Actuators

— Keyboard/mouse,

display

— Communications
* Also accessible from

interconnect

20 Fall 2022 -- DeHon

A/D HDMI

usb ethernet

31

Programmable SoC

UG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

38

37
High Speed I/O
uG1085
Xilinx
UltraScale
Zynq
TRM
(p27)
Penn ESE5320 Fall 2022 - e 3 MighSpend el SockDagram 39
39
Simple Peripheral Model
3"
* Peripherals are b
slave devices u
— Masters can read |] M
input data
— Masters can write ethernet
output data [, M
— To move data,
master (e.g. A/D
processor) initiates
Pl
HDMI
Penn ESE5320 Fall 2022 -- DeHon

41

Penn ESE5320 Fall 2022 -- DeHon

Masters and Slaves

» Two kinds of entities on interconnect

» Master — can initiate requests
— E.g. processor that can perform a read or
write
» Slaves — can only respond to requests
— E.g. memory that can return the read data
from a read request

40

40

Penn ESE5320 Fall 2022 -- DeHon

Simple Peripheral Model

Peripherals are
) = M

slave devices

— Masters can read input
data

— Masters can write output
data

— To move data, master
(e.g. processor) initiates

Demanding

processor touch
every data item has
some negative
consequences

usb

ethernet

A/D

LT

HDMI

42

Timing Demands

Must read each input before overwritten

Must write each output within real-time
window

Must guarantee processor scheduled to
service each I/O at appropriate frequency
How many cycles between 32b input words
for 1Gb/s network and 32b, 1GHz processor?
— Consider input data shifted into register 1b per ns
— Must read out 32b register before overwritten

43

320 Fall 2022 -- DeHon

43

Long Latency Memory
Operations

Part 3

45
320 Fall 2022 -- DeHon

45

Day 3, Preclass 2

* 10 cycle latency to memory

« If must wait for data return, latency can
degrade throughput

+ 10 cycle latency + 10 op + (assorted)
— More than 20 cycles / result
for(i=0;i<MAX;i++) {
in=alil; // memory read
out=f(in); // 10 cycle compute
b[i]l=out;

320 Fall 2022 -- DeHon

47

Refine Model

Give each n__..@

eripheral local
FIFO —
Processor must still n"@
move data — ethernet]
How does this n——"@
change —— <] AD
requirements and n___.@
impact?

] HDMI

nn ESE5320 Fall 2022 -- DeHon

44

enn ES!

Day 3

» Large memories are slow
— Latency increases with memory size

+ Distant memories are high latency
— Multiple clock-cycles to cross chip
— Off-chip memories even higher latency

- 46
E5320 Fall 2022 - DeHon

46

P1:
P2:
P3:

enn ES!

Preclass 3

* Throughput using 3 threads on 3
processors: P1, P2, P3?
for(i=0;i<MAX;i++) Astream.write(al[il]);

while(1) {Astream.read(aval); Bstream.write(f(aval));}
for(i=0;i<MAX;i++) Bstream.read(b[i]);

- 48
E5320 Fall 2022 - DeHon

48

Fetch (Write) Threads

+ Potentially useful to move data in
separate thread

» Especially when

— Long (potentially variable) latency to data
source (memory)

+ Useful to split request/response

- . 49
Penn ESE5320 Fall 2022 -- DeHon
49
Pl: for(i=0;i<MAX;i++) Astream.write(a[il);
WriteAstart NewAddr{24] WriteAstop
y ¥ FIFO_Has Space
ReadAddress(24]
ReadRequest Counter kiogisted FIFO_Write
[E—
Datal32] incr_cntr e
[
DamPresent FIFO_Dataln(32]
int *p;
P1: for(p=&(al0]);p<&(a[MAX]);p++) Astream.write(xp);
- 51
Penn ESE5320 Fall 2022 -- DeHon
51

Penn ESE5320 Fall 2022

* How much hardware? i "2
— Counter bits? '

‘ FIFO_Has_Spact
e
ReadAddress[24]

- | |
ReadRequest FIFO_Write

— Registers?

—
Data[32]

— Comparators? e |
— Control Logic gates? (4cd)

FIFO_Dataln[32]

» Compare to MicroBlaze
—small RISC Processor optimized for Xilinx
= minimum config 630 6-LUTs 53

53

DMA
Part 4

Direct Memory Access

50
Penn ESE5320 Fall 2022 -- DeHon

50

Preclass 4a

Pl: for(i=0;i<MAX;i++) Astream.write(al[il);
&a &(a[MAX])

WriteAstart NewAddr{24] WriteAstop

p=&(alil)
‘ ‘ FIFO_Has_Space
ReadAddress24]
- L o
ReadRequest FIFO_Write
*o=ali] ——— | Astream
Data[32]
R =
DataPresent FIFO_Dataln[32]
int *p;

P1: for(p=&(al0]);p<&(al[MAX]);p++) Astream.write(xp);

) - 52
Penn ESE5320 Fall 2022 -- DeHon

52

Observe

* Modest hardware can serve as data
movement thread

— Much less hardware than a processor
— Offload work from processors

« Small hardware allow peripherals to be
master devices on interconnect

) - 54
Penn ESE5320 Fall 2022 -- DeHon

54

DMA

n_,——M

Direct Memory

Access (DMA) usb
“Direct’ — inputs n__—— M
(and outputs) don’t ethernet

have to be indirectly
handled by the
processor between AD
memory and 1/O

1/ unit directly n——_’ M

reads/write memory HDMI

n_,——M

, 55
20 Fall 2022 -- DeHon

55

DMA Engine

Data Movement Thread

— Specialized Processor that moves data
Act independently (hence thread)
Implement data movement

Can build to move data between
memories (Slave devices)

E.g., Implement P1, P3 in Preclass 3

57
20 Fall 2022 -- DeHon

57

Programmable DMA Engine

What copy from?
How much?
Where copy to?
Stride?

What size data?
Loop?

Transfer Rate?

59
20 Fall 2022 -- DeHon

— Can write directly
into (read from)
memory

— Saves processor
from copying

P el
— Reduces demand to HDMI

schedule processor

E»M

l«——— A/D

DMA
« Direct Memory n—>_’ M
Access (DMA) usb
» Peripheral as E_, M
Master ethernet

o cerny f0.SEVICE. *
56
DMA Engine
P gl
usb
Pl
ethernet
P gl
A/D
Pl
HDMI
, DMA 58
58

Multithreaded DMA Engine

» One copy task not necessarily saturate
bandwidth of DMA Engine

» Share engine performing many
transfers (channels)

» Separate transfer state for each
— Hence thread (or channel)

+ Swap among threads
— Simplest: round-robin:

59

- +1,2,3,.K1,23,.K1, ... 60
E5320 Fall 2022 -- DeHon

60

10

Programmable SoC

UG1085
Xilinx
UltraScale
Zynq
TRM
(p27)

Y onl 6

Example

» Networking Application: inline packet encrypt

Header on processor

Payload (encrypt, checksum) on FPGA

* DMA from ethernet->main memory

* DMA main memory->BRAM

» Stream between payload components

+ DMA from encrypted padket and chksum tq,

Hardwired and Programmable

* Zynq has hardwired DMA engine
— 8 channels

* Also build data movement engines
(Data Movers) in FPGA fabric

UG1085
Xilinx
UltraScale
Zynq
TRM

Ch. 10
(p519)

Fall 2022 -- DeHon

62

Penn ESE5320

Penn ESE5320 Fall 2422 - De,
AR ArAAT AT

62

AXI

Advanced eXtensible Interface

— Originally developed by ARM

— On-chip communication bus standard
— Particular communication protocol
Full AXI

— Read/write operations with bursts

* Burst = single address + length
—Large, contiguous block of memory

— Separate send/receive data channels

AXI-S — for streaming connections
Xl-lite — simpler, not burst 64

.
Penn ESE5320

64

63
Programmable SoC
UG1085
Xilinx
UltraScale
Zynq
TRM
(p27)
Penn ESE532 p— 65
65

. S M S M S
s Width TR 64-bit 128-bit
AXI Channels|
Programmable 128b wide
Logic [veu][®e][Pcreva]|1006b | @ 333 MHz
PL SysMon 2-way Cache Non-Coherent =5.3GB/s
Coherent Master Master
1/0 Coherent BRAM
S_AXL_LPD | Master | | (slave) |
B] m_ax_npmo_tep Separate
o o | Datain
18 29 [
5 gE £ g8 8 o | Dataout
SAXLACP_FPD O O o g o % é Paths
O 5 5% -
S_AXI_ACE_FPD < X = = % = 2 3
33 0% %3 3 23| s530Bs
— p—— == Each way
EE EEE E 66
= U8 WUV E [

11

Programmable SoC

™M s M S

DMA in Vitis
Vitis/OpenCL demands that we write

code to perform DMA of data to and
from accelerators in FPGA fabric

We will see specifics on Monday

Have some options to control

— With pragmas

— With choice of data and burst sizes
— Explore HW6

68

s Width ™ o e
AXI Channels
Programmable 128b wide
Logic [veu |[e |[Ppcieva1][1006b | @ 333 Mz
PL SysMon 2-way Cache Non-Coherent =5.3GB/s
Coherent Master Master Per direCtiOn
S_AXLLPD ./ohﬁg;ee,rem | ‘ (Bs:m | Per channel
> M_axi_npmo_LrD S_actas
ia o o 2 ¢ | master for P
s £E g2 28 2 2| (comnectsto
saaacrr S8 g F¢ ¢ £ E| slaveports
o5 S s R % = i
saxacfo T E % ZE % gz| in PS)
[) w n » wn 2 =2
e e e e T~ M_asglave
e 85 & 58 & u for PL
67
Big Ideas
* Need to move data
» Shared Interconnect to make physical
connections — can tune area/bw/locality
» Useful to
—move data as separate thread of control
— Have dedicated data-movement hardware:
DMA
. 69
Penn ESE5320 Fall 2022 -- DeHon
69

68
Admin
* Feedback
« HW5
— Due Friday
« HW6
—Out
Penn ESE5320 Fall 2022 -- DeHon 70
70

12

