ESE5320: System-on-a-Chip Architecture Day 12: October 12, 2022 Data Movement (Interconnect, DMA)

Preclass 1

• N processors

• Each: 1 read, 10 cycle compute, 1 write

• Memory: 1 read or write per cycle

• How many processors can support before saturate memory capacity?

Penn ESES320 Fall 2022 -- DeHon

2

Bottleneck

• Sequential access to a common memory can become the bottleneck

PPPPPPPMem

4

3

Previously • Want data in small memories – Low latency, high bandwidth • FPGA has many memories all over fabric

Embedded Memory in FPGA
Logic Memory Memory
Cluster Bank Frequency

Trequency

ZU3EG (Ultra96) has 216 36Kb BRAMs
VU9P (Amazon F1) has 2,160

6

5

Previously

- · Want data in small memories
 - Low latency, high bandwidth
- FPGA has many memories all over fabric
- · Want C arrays in small memories
 - Partitioned so can perform enough reads (writes) in a cycle to avoid memory bottleneck

enn ESE5320 Fall 2022 -- DeHon

7

7

Penn ESE5320 Fall 2022 -- DeHo

Message

- · Need to move data
- Often use shared interconnect to make physical connections
- Useful to move data as separate thread of control
 - Dedicating a processor is inefficient
 - Useful to have dedicated data-movement hardware: Direct Memory Access (DMA)

Penn ESE5320 Fall 2022 -- DeHon

9

9

_

Today

- Interconnect Infrastructure (Part 1)
- Peripherals (Part 2)
- Data Movement Threads (Part 3)
- DMA -- Direct Memory Access (Part 4)

Term: Peripheral

- "On the edge (or perhiphery) of something"
- Peripheral device device used to put information onto or get information off of a computer
 - E.g.
 - Keyboard, mouse, modem, USB flash drive, ...

Penn ESE5320 Fall 2022 -- DeHon

10

Memory and I/O Organization

- · Architecture contains
 - Large memories
 - · For density, necessary sharing
 - Small memories local to compute
 - · For high bandwidth, low latency, low energy
 - Peripherals for I/O
- · Need to move data
 - Among memories and I/O
 - Large to small and back
 - · Among small
- From Inputs, To Outputs

12

10

11 12

How move data?

- · Abstractly, using stream links.
- Connect stream between producer and consumer.
- · Ideally: dedicated wires

Penn ESE5320 Fall 2022 -- DeHoi

13

13

Making Connections

- · Cannot always be dedicated wires
 - Programmable
 - Wires take up area
 - Don't always have enough traffic to consume the bandwidth of point-to-point wire
 - May need to serialize use of resource
 - E.g. one memory read per cycle
 - Source or destination may be sequentialized

on hardware

15

Simple Realization

Shared Bus

• Write to bus with address of destination

• When address match, take value off bus

• Pros?

• Cons?

17 18

Dedicated Wires?

 What might prevent us from having dedicated wires between all communicating units?

14

16

Alternate: Crossbar

- Provide programmable connection between all sources and destinations
- Any destination can be connected to any single source

ESE5320 Fall 2022 -- DeHon

Alternate: Crossbar · Provide programmable connection between all sources and destinations · Any destination can be connected to any single source Р

20

22

Preclass 2 • K-input, O-output Crossbar · How many 2-input muxes? 22

21

Crossbar · Provides high bandwidth - Minimal blocking · Costs large amounts of area Grows fast with inputs, outputs 23

General Interconnect · Generally, want to be able to parameterize designs · Here: tune area-bandwidth - Control how much bandwidth provide 24

Share Crossbar Outputs • Group set of outputs together on a bus M M 28

Delay • Delay proportional to distance · Pipeline bus to keep cycle time down - Take many cycles to travel long distance - ...but fewer cycles when distance small · Sometimes call this a "Ring"

29 30

Masters and Slaves

- Two kinds of entities on interconnect
- Master can initiate requests
 - E.g. **processor** that can perform a read or write
- Slaves can only respond to requests
 - E.g. memory that can return the read data from a read request

40

Penn ESE5320 Fall 2022 -- DeHo

40

39

Simple Peripheral Model · Peripherals are slave devices - Masters can read input - usb data - Masters can write output data - ethernet - To move data, master (e.g. processor) initiates Demanding processor touch A/D every data item has M some negative consequences HDMI

41 42

Timing Demands

- Must read each input before overwritten
- Must write each output within real-time window
- Must guarantee processor scheduled to service each I/O at appropriate frequency
- How many cycles between 32b input words for 1Gb/s network and 32b, 1GHz processor?
 - Consider input data shifted into register 1b per ns
 - Must read out 32b register before overwritten

E0EE000 E-110000 D-11--

43

45

43

Long Latency Memory Operations

Part 3

Penn ESE5320 Fall 2022 -- DeHon

45

Day 3, Preclass 2

- 10 cycle latency to memory
- If must wait for data return, latency can degrade throughput
- 10 cycle latency + 10 op + (assorted)
 - More than 20 cycles / result

```
for(i=0;i<MAX;i++) {
   in=a[i]; // memory read
   out=f(in); // 10 cycle compute
   b[i]=out;
}</pre>
```

n ESE5320 Fall 2022 -- DeHon

Refine Model

• Give each peripheral local FIFO

• Processor must still move data
• How does this change requirements and impact?

Penn ESE5320 Fall 2022 -- DeHon

44

- Day 3
- · Large memories are slow
 - Latency increases with memory size
- · Distant memories are high latency
 - Multiple clock-cycles to cross chip
 - Off-chip memories even higher latency

Penn ESE5320 Fall 2022 -- DeHon

46

Preclass 3

 Throughput using 3 threads on 3 processors: P1, P2, P3?

```
P1: for(i=0;i<MAX;i++) Astream.write(a[i]);
P2: while(1) {Astream.read(aval); Bstream.write(f(aval));}
P3: for(i=0;i<MAX;i++) Bstream.read(b[i]);
```

Penn ESE5320 Fall 2022 -- DeHon

48

48

46

Fetch (Write) Threads

- Potentially useful to move data in separate thread
- · Especially when
 - Long (potentially variable) latency to data source (memory)
- · Useful to split request/response

Penn ESE5320 Fall 2022 -- DeHon

49

50

49

51

DMA

Part 4

Direct Memory Access

52

Observe

Modest hardware can serve as data movement thread

Much less hardware than a processor
Offload work from processors

Small hardware allow peripherals to be master devices on interconnect

53 54

DMA Engine

- · Data Movement Thread
 - Specialized Processor that moves data
- Act independently (hence thread)
- · Implement data movement
- Can build to move data between memories (Slave devices)
- E.g., Implement P1, P3 in Preclass 3

Penn ESE5320 Fall 2022 -- DeHon

57

57

Programmable DMA Engine

- · What copy from?
- · How much?
- · Where copy to?
- · Stride?
- · What size data?
- · Loop?
- · Transfer Rate?

Penn ESE5320 Fall 2022 -- DeHon

59

Multithreaded DMA Engine

- One copy task not necessarily saturate bandwidth of DMA Engine
- Share engine performing many transfers (channels)
- Separate transfer state for each
 - Hence thread (or channel)
- Swap among threads
 - Simplest: round-robin:

• 1, 2, 3, .. K, 1, 2, 3, .. K, 1,

60

Hardwired and Programmable

- · Zyng has hardwired DMA engine -8 channels
- Also build data movement engines (Data Movers) in FPGA fabric

62

Example

Networking Application: inline packet encrypt

- Header on processor
- · Payload (encrypt, checksum) on FPGA
- DMA from ethernet→main memory
- DMA main memory→BRAM
- Stream between payload components
- DMA from encrypted padket and chksum to,

63

AXI

62

64

- · Advanced eXtensible Interface
 - Originally developed by ARM
 - On-chip communication bus standard
 - Particular communication protocol
- Full AXI
 - Read/write operations with bursts
 - Burst = single address + length
 - -Large, contiguous block of memory
 - Separate send/receive data channels
- AXI-S for streaming connections
- AXI-lite simpler, not burst

64

65 66

DMA in Vitis

- Vitis/OpenCL demands that we write code to perform DMA of data to and from accelerators in FPGA fabric
- · We will see specifics on Monday
- · Have some options to control
 - With pragmas
 - With choice of data and burst sizes

Admin

68

70

- Explore HW6

Penn ESE5320 Fall 2022 -- DeHon

68

0,

Big Ideas

- · Need to move data
- Shared Interconnect to make physical connections – can tune area/bw/locality
- Useful to
 - move data as separate thread of control
 - Have dedicated data-movement hardware: DMA

Penn ESE5320 Fall 2022 -- DeHon

69

69

• HW5

- Due Friday

Feedback

• HW6

– Out

Penn ESE5320 Fall 2022 -- DeHon

70