ESE5320: System-on-a-Chip Architecture

Day 18: Nov. 2, 2022 Hash Tables **Design Space**

Today

- Software Map Trees (Part 1)
- Hash Tables (Part 2)
 - Software
 - Hardware (FPGA) Hash Maps
- Design-Space Exploration
 - Generic (Part 3)
 - Concrete (Part 4):

Fast Fourier Transform (FFT)

· Time permitting

ESE5320 Fall 2022 -- DeHor

Message

- · Hash tables are useful tools
- · The universe of possible implementations (design space) is large
 - Many dimensions to explore
- · Formulate carefully
- · Approach systematically
- · Use modeling along the way for guidance

3

Software Map

Part 1

Day 17: Preclass 1

· How many memory accesses needed

- When lookup succeed (on average)?

Software Map

- · Map abstraction
 - void insert(key,value);
 - value lookup(key);
- · Will typically have many different implementations

ESE5320 Fall 2022 -- DeHor

n ESE5320 Fall 2022 -- DeHo

• For a capacity of 4096

- When lookup fail?

Tree Map LZW

- Each character requires log₂(dict) lookups
 - 12 for 4096
- · Each internal tree node hold
 - Key (20b for LZW), value (12b), and 2 pointers (12b)
 - 7B
- Total nodes 4K*2
- Need 14 BRAMs for 4K chunk

Tree Insert

- · Need to maintain balance
- Doable with O(log(N)) insert
 - Tricky
 - See Red-Black Tree
 - https://en.wikipedia.org/wiki/Red-black_tree
 - https://www.geeksforgeeks.org/red-black-tree

9

11

4K Chunk LZW Search Story so far....

BRAMs	Operations
1	4K
512	1
175	1
14	12
	1 512 175

36Kb BRAMs on ZU3EG = 216

10

Hash Tables

Part 1

ESE5320 Fall 2022 -- DeHon

High Performance Map

- · Would prefer not to search
- Want to do better than log₂(N) time - log₂(N) achieved with tree
- Direct lookup in arrays (memory) is good...

n ESE5320 Fall 2022 -- DeHo

13

Hash Table lookup_key · Compute some function of key hash - A hash Mem · Perform lookup at that point · Find bucket with small number of entries - Searching that bucket easier Bucket = - ...but no absolute guarantee on <k1,v1>, <k2,v2>. maximum bucket size <k3,v3>

16

15

17

Hardware Hash lookup key hash · Want to avoid variable size buckets Mem - So can read in one lookup • Can make wider for some fixed number of slots - So can resolve in one cycle Bucket = <k1,v1>, <k2,v2>, <k3,v3> 18 n ESE5320 Fall 2022 -- DeHo

18

Hash Size Distribution

- Look at what the distribution looks like for number of entries
- N number of entries
- · C HASH CAPACITY
- m number of items in a slot
- Compute distribution for each bucket size

19

20

Hash

- Can tune hash parameters to control distribution
- Spend more memory → smaller buckets
- → less work finding things in buckets
 - Memory-Time tradeoff
- · Still have possibility of large buckets
 - -...but probability is low

Penn ESE5320 Fall 2022 -- DeHon

21

23

21

Hash mostly works

Engineer hash to hold most cases

Combination of
sparcity (entries>N)
Hold multiple entries per hash value

Few cases that overflow
Store in small fully associative memory

LZW 4K Chunk Hybrid

- needs 3 match BRAMs + 1 value BRAM

-72 entries (72/4096=1.7% for 4096)

So, can hold ~1% conflicts in 4K hash
Hash N=4096, C=16384, m=2, store 2

Idea

22

24

- Prob 3+: <1% (see table 1024, 4096)
- 20b key+12b value=4B per entry
- 16384*2*4B=4*2*4 BRAMs

• 32+4=36 BRAMs

• 72 entry assoc. match

- Associative match 20b key

Further Optimization

- · Previous example illustrative
 - Not necessarily optimal (explore parameters)
 - · Expect not optimal
- May be able to do better with multiple hashes
 - See Dhawan reading paper
 - May need to use that design in hybrid configuration with assoc. memory like previous example

SE5320 Fall 2022 -- DeHor

25

Hash Complexity

- · Want to compute these lookup hashes for hardware fast
 - In a single cycle to keep II down for LZW
 - Can xor-together a set of bits quickly in hardware
 - Any 6-bits for one output bit in a single 6-LUT
 - Means capacity must be power-of-2

27

29

Part 3 **Design-Space Exploration**

Generic

ESE5320 Fall 2022 -- DeHon

- Allow Imperfect?
 Question: impact on compression if cannot store a few tree entries?
- · Some encodings will find shorter matches than optimal
- Q: Impact on compression rate as a function of conflict rate?
- · How compare to compression rate impact of chunk size?
 - Larger chunk with conflict rate vs. smaller chunk with smaller (or no) conflict rate

26

• → another tradeoff to explore

26

4K Chunk LZW Search

	BRAMs	Operations
Brute Search	1	4K
Tree with Dense RAM	512	1
Tree with Full Assoc	175	1
Tree with Tree	14	12
Tree with Hybrid	36	1

36Kb BRAMs on ZU3EG = 216

28

Design Space

- · Have many choices for implementation
 - Alternatives to try
 - Parameters to tune
 - Mapping options
- · This is our freedom to impact implementation costs
 - Area, delay, energy

30 nn ESE5320 Fall 2022 -- DeHon

Design Space

- Ideally
 - Each choice orthogonal axis in high-dimensional space
 - Want to understand points in space
 - Find one that best meets constraints and goals
- Practice
 - Seldom completely orthogonal
 - Requires cleverness to identify dimensions
 - Messy, cannot fully explore
- But pcan understand, prioritize, guide

31

Preclass 3

- What choices (design-space axes) can we explore in mapping a task to an SoC?
- Hint: What showed up in homework so far?

Penn ESE5320 Fall 2022 -- De

32

32

Design-Space Choices

- · Type of parallelism
- · How decompose / organize parallelism
- Area-time points (level exploited)
- What resources we provision for what parts of computation
- · Where to map tasks
- · How schedule/order computations
- · How synchronize tasks
- · How represent data

ESE5320 Fall 2022 -- DeHor

35

- · Where place data; how manage and move
- What precision use in computations

33

35

Generalize Continuum

- Encourage to think about parameters (axes) that capture continuum to explore
- · Start from an idea
 - Maybe can compute with 8b values
 - Maybe can put matrix-mpy computation on FPGA fabric
 - Maybe 1 hash + 1 fully assoc.
 - Move data in 1KB chunks
- · Identify general knob
 - Tune intermediate bits for computation
 - How much of computation go on FPGA fabric
 - How many hash/assoc levels?

ESES: What is optimal data transfer size?

34

33

34

Design Space Explore

- Think systematically about how might map the application
- · Avoid overlooking options
- · Understand tradeoffs

ESE5320 Fall 2022 -- DeHor

36

- The larger the design space
 - →more opportunities to find good solutions

Reduce bottlenecks

36

Elaborate Design Space

- · Refine design space as you go
- · Ideally identify up front
- Practice bottlenecks and challenges
 - will suggest new options / dimensions
 - · If not initially expect memory bandwidth to be a bottleneck...
- · Some options only make sense in particular sub-spaces
 - Bitwidth optimization not a big issue on the 64b processor

• More interesting on vector, FPGA

Tools

- · Sometimes tools will directly help you explore design space
 - Sometimes do it for you
 - Mimimize II
 - In your hands, make easy
 - · Unrolling, pipelining, II
 - · Array packing and partitioning
 - · Some choices for data movement
 - · DMA pipelining and transfer sizes
 - · Some loop transforms
 - · Granularity to place on FPGA
 - · ap fixed

· Number of data parallel accelerators

37

Tools

- · Often tools will not help you with design space options
 - Need to reshape functions and loops
 - Line buffers
 - Data representations and sizes
 - C-slow sharing
 - Communications overlap
 - Picking hash function parameters

39

Code for Exploration

- · Can you write your code with parameters (#define) that can easily change to explore continuum?
 - Unroll factor?
 - Number of parallel tasks?
 - Size of data to move?
- · Want to make it easy to explore different points in space

40

42

38

Part 4 **Design-Space Exploration**

Example FFT

n ESE5320 Fall 2022 -- DeHon

41

Sound Waves Hz = 1/s1kHz = 1000 cycles/s 1 kHz Tone Source: http://www.mediacollege.com/audio/01/sound-waves.html

Discrete Sampling · Represent as time sequence · Discretely sample in time · What we can do directly with an Analog-to-Digital (A2D) converter http://en.wikipedia.org/wiki/File:Pcm.svg n ESE5320 Fall 2022 -- DeHon 43

Time-Domain & Frequency-domain • example...have a pure tone - If period: T = 1/2 and Amplitude = 3 Volts $-s(t) = A \sin(2\pi f t) = A \sin(2\pi 2t)$ Frequency domain representation Time domain representation SE5320 Fall 2022 -- DeHo

44

Fourier Transform

- Identify spectral components (frequencies)
- · Convert between Time-domain to Frequency-domain
 - E.g. tones from data samples
 - Central to audio coding e.g. MP3 audio

$$Y[k] = \sum_{j=0}^{n-1} \left(X[j]e^{-2i\pi \frac{k}{n}} \right)$$

nn ESE5320 Fall 2022 -- D

48

FT as Matching

- · Fourier Transform is essentially performing a dot product with a frequency
 - How much like a sine wave of freq. f is this?

$$Y[k] = \sum_{j=0}^{n-1} \left(X[j]e^{-2i\pi \frac{k}{n}} \right)$$

49

Fast-Fourier Transform (FFT)

- · Efficient way to compute FT
- O(N*log(N)) computation
- Contrast N² for direct computation
 - N dot products
 - Each dot product has N points (multiply-adds)

$$Y[k] = \sum_{j=0}^{n-1} \left(X[j] e^{-2i\pi \frac{k}{n}} \right)$$

50

FFT

- · Large space of FFTs
- · Radix-2 FFT Butterfly

w - constant that Differs for each instance -- "twiddle" factor

51

Basic FFT Butterfly

- Y0=X0+W(stage,butterfly)*X1
- Y1=X0-W(stage,butterfly)*X1
- · Common sub expression, compute once: W(stage,butterfly)*X1

52

Preclass 4

- · What parallelism options exist?
 - Single FFT
 - Sequence of FFTs

ESE5320 Fall 2022 -- DeHon

- 53

FFT Parallelism

- Spatial
- Pipeline
- Streaming
- · By column
 - Choose how many Butterflies to serialize on a PE
- · By subgraph
- · Pipeline subgraphs

ESE5320 Fall 2022 -- DeHon

54

Preclass 5

• How large of a spatial FFT can implement with 360 multipliers?

– 1 multiply per butterfly

– (N/2) log₂(N) butterflies

56

Bit Serial

- Could compute the add/multiply bit serially
 - One full adder per adder
 - W full adders per multiply
 - W=16, maybe 20-30 LUTs
 - -70,000 LUTs

57

- ~= 70,000/30 ~= 2330 butterflies
 - -512-point FFT has 2304 butterflies
- Another dimension to design space:
 - How much serialize word-wide operators
 - Use LUTs vs. DSPs

Penn ESE5320 Fall 2022 -- DeHon

58

57

Processor Mapping

• How map butterfly operations to processors?

- Implications for communications?

Storage How large local memory to communicate from stage to stage?

=== **=** ≒□≒ **==** ≒□∺ **=**□= **==** ≒⊒∺

Evaluation Order

• How change evaluation order to reduce local storage memory?

62

ESE5320 Fall 2022 -- DeHo

62

61

63

61

Evaluation Order

· Evaluation order

63

Streaming FFT **=**D='

64

Communication

- · How implement the data shuffle between processors or accelerators?
 - Memories / interconnect ?
 - How serial / parallel ?
 - Network?

n ESE5320 Fall 2022 -- DeHon

Data Precision

- · Input data from A2D likely 12b
- Output data, may only want 16b
- · What should internal precision and representation be?

nn ESE5320 Fall 2022 -- DeHon

65

66

Number Representation

- · Floating-Point
 - IEEE standard single (32b), double (64b)
 - · With mantissa and exponent
 - · ...half, quad
- Fixed-Point
 - Select total bits and fraction
 - E.g. 16.8 (16 total bits, 8 of which are fraction)
 Represent 1/256 to 256-1/256
 - $-A(mpy) \sim W^2$, $A(add) \sim W$

2022 -- DeHon

67

68

67

Heterogeneous Precision

- · May not be same in every stage
 - W factors less than 1
 - Non-fraction grows at most 1b per stage

Penn ESE5320 Fall 2022 -- [

69

W Coefficients (w[stage][j])

- · Precompute and store in arrays
- · Compute as needed
 - How?
 - sin/cos hardware?
 - · CORDIC?
 - Polynominal approximation?
- · Specialize into computation
 - Many evaluate to 0, ± 1 , $\pm \frac{1}{2}$,
 - Multiplication by 0, 1 not need multiplier...

ESE5320 Fall 2022 -- DeHon

70

FFT (partial) Design Space

- Parallelism
- Decompose
- · Size/granularity of accelerator
 - Area-time
- · Sequence/share
- Communicate
- · Representation/precisions
- · Twiddle W[stage][j] coefficients

Penn ESE5320 Fall 2022 -- DeHon

71

Big Ideas

- Near O(1) Map access → Hash Table
- Large design space for implementations
 - Including associative maps
- Worth elaborating and formulating systematically
 - Make sure don't miss opportunities
- Think about continuum for design axes
- Model effects for guidance and understanding

72

72

Admin

- Feedback
- Reading for Monday on web
- First project milestone due Friday
 - Including teaming
- P2 out

Penn ESE5320 Fall 2022 -- DeHon