ESES5320:
System-on-a-Chip Architecture

Day 20: November 9, 2022
Verification 2

- & Penn,

Today

Assertions (Part 1)

Proving correctness (Part 2)
— FSM Equivalence

Timing and Testing (Part 3)

Message

* If you don't test it, it doesn’t work.
* Testing can only prove the presence of
bugs, not the absence.
— Full verification strategy is more than
testing.
» Valuable to decompose testing
— Functionality
— Functionality at performance

nn ESE5320 Fall 2022 - DeHor 3

Assertions

Penn

Assertion

Predicate (Boolean expression) that must
be true

Add to code

— Can uses variables in code to write expression
Example: assert (num<100);

Invariant

— Expect/demand this property to always hold

— Never vary - never not be true

ESE5320 Fall 2022 -- DeHor 5

5

Equivalence with Reference
as Assertion

Match of test and golden reference is a
heavy-weight example of an assertion

r=fimpl(in);
assert (r==fgolden(in));

Assertion as Invariant

* May express a property that must hold
without expressing how to compute it.
— Different than just a simpler way to compute

int res[2];
res=divide(n,d);
assert (res[QUOTIENT] *d+res[REMAINDER]==n);

Penn ESE5320 Fall 2022 -- DeHon

Lightweight

* Typically lighter weight (less
computation) than full equivalence
check

Typically less complete than full check

Allows continuum expression

Penn ESE5320 Fall 2022 -- DeHon 8

Preclass 1

What property needs to hold on 1?
Note: divide: s/1

s=packetsum(p);

l=packetlen(p);

res=divide(s,1l);

Penn ESE5320 Fall 2022 -- DeHon

Check a Requirement

s=packetsum(p);
l=packetlen(p);
assert(1!=0);
res=divide(s,1l);

Penn ESE5320 Fall 2022 -- DeHon 10

10

Preclass 2

What must be true of my array[loc]
after call?

int findloc(int target, int *a, int limit);

int loc;

loc=findloc(my_target,my_array,MY_ARRAY_LEN);
// property on my_array[loc] should hold here?

Penn ESE5320 Fall 2022

1

. Day 13
Merge using Streams

* Merging two sorted list is a streaming
operation
int aptr; int bptr;
+ astream.read(ain); bstream.read(bin)
For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}

o esc2ISE. COPY, OVer remaining from astream/bstreamqo

11

12

Merge Requirement
* Require: astream, bstream sorted

* int aptr; int bptr;
+ astream.read(ain); bstream.read(bin)
* For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}
Else // copy over remaining from astream/bstream
Penn ESE5320 Fall 2022 - DeHon 13

Merge Requirement
Require: astream, bstream sorted
Int ptr; int bptr;
astream.read(ain); bstream.read(bin)
For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++;
int prev_ain=ain; astream.read(ain);
assert(prev_ain<=ain);

enn ESE5320 Fall 2022 -- DeHon 14

14

Merge with Order Assertion

* When composed
— Every downstream merger checks work of

predecessor
Penn ESE5320 F. H 15
15

What do with Assertions?

+ Include logic during testing (verification)

* Omit once tested
— Compiler/library/macros (#define) omit code
— Keep in source code

+ Maybe even synthesize to gate logic for
FPGA testing

* When assertion fail
— Count
— Break

Penn ESE5320 Fall 2022

program for debugging (dump core)
17

Merge Requirement
Require: astream, bstream sorted

Requirement that input be sorted is good

— And not hard to check

Not comprehensive

— Weaker than saying output is a sorted version of
input

What errors would it allow?

16

16

Assertion Roles

+ Specification (maybe partial)

— May address state that doesn'’t exist in gold

reference

» Documentation
— This is what | expect to be true

+» Needs to remain true as modify in the future
Defensive programming
— Catch violation of input requirements
+ Catch unexpected events, inputs
Early failure detection

™
%]

= essNfglidatethat somethinag isn’t happening

18

18

Peni

n ES

Assertion Discipline

* Worthwhile discipline

— Consider and document input/usage
requirements

— Consider and document properties that
must always hold

» Good to write those down
— As precisely as possible
» Good to check assumptions hold

SE5320 Fall 2022 -- DeHon

19

19

Prove Equivalence

* Testing is a subset of Verification

 Testing can only prove the presence of
bugs, not the absence.

» Depends on picking an adequate set of
tests

» Can we guarantee that all behaviors are
the correct? Same as reference?
Seen all possible behaviors?

nn ESE5320 Fall 2022 -- DeHor

21

21

. . Day 19
Testing with Reference

Specification
Validate the design by testing it:
* Create a set of test inputs
* Apply test inputs

— To implementation under test
— To reference specification

+ Collect response outputs
* Check if outputs match

23

Equivalence Proof

FSM
Part 2

20

Idea

» Reason about all behaviors
— Response to all possible inputs

* Try to find if there is any way to reach
disagreement with specification

 Or can prove that they always agree

« Still demands specification
—...but we can also relax that with assertions

Penn ESE5320 Fall 2022 -- DeHor

22

22

Formal Equivalence with
Reference Specification

Validate the design by proving
equivalence between:

+ implementation under consideration
« reference specification

23

24

24

Testing FSM Equivalence

» Exhaustive:
— Generate all strings of length |state|
* (for larger FSM = the one with the most states)
— Feed to both FSMs with these strings
— Observe any differences?
* How many such strings?

— (N binary input bits to FSM, S states)
—_2N's

Penn ESE5320 Fall 2022 - DeHon 25

25

Penn

Compare

+ Start with golden model setup || *** oo
— Run both and compare output . ‘ |

» Create composite FSM
— Start with both FSMs FSM1
— Connect common inputs
together (Feed both FSMs)
— XOR together outputs of two
FSMs

« Xor's will be 1 if they disagree,
0 otherwise

n ESE5320 Fall 2022 - DeHon 7

27

Penn

Creating Composite I
FSM [
» Assume know start state for each FSM w
» Each state in composite is labeled by

the pair {S1;, S2}}

— How many such states?
« Startin {S1o, S20}
» For each input a, create a new edge:

— T(a,{S10, S2})~> {S1, S2}

« If T4(a, S19)> S1;and Ta(a, S20)> S2;

» Repeat for each composite state reached

ESE5320 Fall 2022

DeHor 29

29

Peni

FSM Equivalence

« lllustrate with concrete model of FSM
equivalence

— Is some implementation FSM
— Equivalent to reference FSM

n ESE5320 Fall 2022 -- DeHon

26

26

Penn

Compare

» Create composite FSM
— Start with both FSMs
— Connect common inputs together (Feed both FSMs)
— XOR together outputs of two FSMs
« Xor's will be 1 if they disagree, 0 otherwise
+ Ask if the new machine ever generate a 1 on an
xor output (signal disagreement)
— Any 1 is a proof of non-equivalence
— Never produce a 1 - equivalent

ESE5320 Fall 2022 -- DeHon

28

28

Penn ESE5320 Fall 2022

Composite FSM

* How much work?
 Hint:
— Maximum number of composite states
(state pairs)

— Maximum number of edges from each
state pair?

— Work per edge?

DeHor

30

30

Composite FSM

* Work
At most |2N|*|State1|*|State2| edges ==
work
» Can group together original edges
—i.e. in each state compute intersections of
outgoing edges
— Really at most |E1|*|E2|

Penn ESE5320 Fall 2022 -- DeHon

31

Non-Equivalence

+ State {S1;, S2} demonstrates non-
equivalence i#f
—{S1;, S2j} reachable

— On some input, State S1;and S2; produce
different outputs

* If S1;and S2;have the same outputs for
all composite states, it is impossible to
distinguish the machines
— They are equivalent
» A reachable state with differing outputs
o eseenn=dmOplies the machines are not identical 32

31

Answering Reachability

« Start at composite start state {S1y, S2,}
 Search for path to a differing state
* Use any search
— Breadth-First Search, Depth-First Search
* End when find differing state
— Not equivalent
* OR when have explored entire
reachable graph without finding
— Are equivalent

Penn ESE5320 Fall 2022 -

33

32

Reachability Search

* Worst: explore all edges at most once
— O(IEN=O(|E4[*|E2|)

» Can combine composition construction
and search
—i.e. only follow edges which fill-in as search
— (way described)

33

Penn ESE5320 Fall 2022 -- DeHon 34

Preclass 3

1/0

- Means don’t-care. Can read as (0 or 1) here.

Penn ESE5320 Fall 2022 -- D

35

Creating Composite FSM

» Assume know start state for each FSM
+ Each state in composite is labeled by the pair
{S1;, S2}}
« Startin {S1o, S20}
* For each symbol a, create a new edge:
— T(a,{S10, S2})~> {S1;, S2}
* If T4(a, S19)> S1; and Ta(a, S2p)> S2;

« Check that both state machines produce same outputs
on input symbol a

» Repeat for each composite state reached

35

Penn ESE5320 Fall 2022 -- DeHor 36

36

Preclass 4
i State NextState o
0 S0 S1 0
1 80 S2 0
0 s1 s3 1
181 sS4 0
0 82 sS4 0
182 sS4 1
- 83 S5 0
- 54 S5 0
- 85 SO 0

37

Assertion Failure Reachability

« Can use with assertions

« |s assertion failure reachable?

— Can identify a path (a sequence of inputs)
that leads to an assertion failure?

39

Timing

Part 3

n ESE5320 Fall 2022

41

41

FSM - Model Checking

» FSM case simple — only deal with states

» More general, need to deal with
— operators (add, multiply, divide)
— Wide word registers in datapath
+ Cause state exponential in register bits

* Tricks
— Treat operators symbolically
* Separate operator verification from control verif.
— Abstract out operator width
« Similar flavor of case-based search
pon s ONditionals need to be evaluated symbolicallyg

38

Formal Equivalence Checking

« Rich set of work on formal models for
equivalence

— Challenges and innovations to making
search tractable

— Used with processor validation
» Common versions

— Model Checking (2007 Turing Award)
— Bounded Model Checking

Penn ESE5320 Fall 2022 -- DeHor 40

Issues

+ Cycle-by-cycle specification can be
overspecified

+ Golden Reference Specification not run
at target speed

42

Penn ES

Tokens

» Use data presence to indicate when
producing a value
* Only compare corresponding outputs

— Only store present outputs from
computations, since that's all comparing

* Relevant non-Real-Time
» Examples?
— (not want to match cycle-by-cycle)

SE5320 Fall 2022 -- DeHon

43

43

Challenge

» Cannot record at full implementation rate

— Inadequate bandwidth to
« Store off to disk
* Get out of chip

+ Cannot record all the data you might want
to compare at full rate

45

Bursts to Memory

* Run in bursts

* Repeat
— Enable computation
— Run at full rate storing to memory buffer
— Stall computation

— Offload memory buffer at (lower) available
bandwidth

— (possibly check against golden model)

SE5320 Fall 2022

47

47

Timing
* Record timestamp from implementation
« Allow reference specification to specify
its time stamps
— “Model this as taking one cycle”

— Or requirements on its timestamps
* This must occur before cycle 63
« This must occur between cycle 60 and 65

» Compare values and times
* More relevant Real Time

» Example Real Time where exact cycle
-nat.malter? What does?

44

At Speed Testing

» Compiled assertions might help

— Perform the check at full rate so don’t need
to record

 Capture bursts to on-chip memory
— Higher bandwidth

— ...but limited capacity, so cannot operate
continuously

Penn ESE5320 Fall 2022 -- DeHon

46

Generalize

Low speed, sequential load

* Generalize to
input and output

* Feed from memories 2
* Compute full rate
* Write into memory

s —

re
in Memory

Low speed, sequential offlpad

AXI Bus

» Can run at high rate for number of
cycles can store inputs and outputs

Penn ESE5320 Fall 2022

48

48

Generalize

Low speed, sequential load

Generalize to
input and output

Feed from memories
Compute full rate
Write into memory

High Operator
Under
Test

re s- —
in Memory

Low speed, sequential offlpad

AXI Bus

What might this fail to test?

49

nn ESE532

* Issue

Low speed, sequential load

Burst Testing =

— May only see high speed for
computation/interactions that occur within a
burst period

— May miss interaction at burst boundaries

» Mitigation

— Rerun with multiple burst boundary offsets
— So all interactions occur within some burst
— Decorrelate interaction and burst boundary

50

49

Timing Validation

» Doesn’t need to be all testing either

+ Static Timing Analysis to determine
viable clock frequency
— As Vivado is providing for you

* Cycle estimates as get from Vivado
—1I, to evaluate a function

* Worst-Case Execution Time for
software

nn ESE5320 Fall 2022 -- DeHor

51

51

Learn More

» CIS6730 — Computer Aided Verification

+ CIS5410 —includes verification for real-
time system properties

+ CIS5000 — Software Foundations
— Has mechanized proofs, proof checkers

53

53

50

Decompose Verification

Breaks into two pieces:
1. Does it function correctly?
2. What speed does it operate it?

— Does it continue to work correctly at that
speed?

52

52

Per

n ESE

Big ldeas

Assertions valuable

— Reason about requirements and invariants
— Explicitly validate

Formally validate equivalence when
possible

Valuable to decompose testing

— Functionality

— Functionality at performance

...we can extend techniques to address
timing and support at-speed tests

54

Feedback

Reading for Monday on Canvas

P2 due Friday
P3 out

CIS6730 — closer to flavor or part1,2

today

Admin

55

10

