ESES5320:
System-on-a-Chip Architecture

Day 20: November 9, 2022
Verification 2

- & Penn,

Today

Assertions (Part 1)

Proving correctness (Part 2)
— FSM Equivalence

Timing and Testing (Part 3)

Message

* If you don't test it, it doesn’t work.
* Testing can only prove the presence of
bugs, not the absence.
— Full verification strategy is more than
testing.
» Valuable to decompose testing
— Functionality
— Functionality at performance
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Assertions

Penn

Assertion

Predicate (Boolean expression) that must
be true

Add to code

— Can uses variables in code to write expression
Example: assert (num<100);

Invariant

— Expect/demand this property to always hold

— Never vary - never not be true
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Equivalence with Reference
as Assertion

Match of test and golden reference is a
heavy-weight example of an assertion

r=fimpl(in);
assert (r==fgolden(in));




Assertion as Invariant

* May express a property that must hold
without expressing how to compute it.
— Different than just a simpler way to compute

int res[2];
res=divide(n,d);
assert (res[QUOTIENT ] *d+res[REMAINDER ]==n);
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Lightweight

* Typically lighter weight (less
computation) than full equivalence
check

Typically less complete than full check

Allows continuum expression
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Preclass 1

What property needs to hold on 1?
Note: divide: s/1

s=packetsum(p);

l=packetlen(p);

res=divide(s,1l);
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Check a Requirement

s=packetsum(p);
l=packetlen(p);
assert(1!=0);
res=divide(s,1l);
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Preclass 2

What must be true of my array[loc]
after call?

int findloc(int target, int *a, int limit);

int loc;

loc=findloc(my_target,my_array,MY_ARRAY_LEN);
// property on my_array[loc] should hold here?
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. Day 13
Merge using Streams

* Merging two sorted list is a streaming
operation
int aptr; int bptr;
+ astream.read(ain); bstream.read(bin)
For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}

o esc2ISE. COPY, OVer remaining from astream/bstreamqo
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Merge Requirement
* Require: astream, bstream sorted

* int aptr; int bptr;
+ astream.read(ain); bstream.read(bin)
* For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}
Else // copy over remaining from astream/bstream
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Merge Requirement
Require: astream, bstream sorted
Int ptr; int bptr;
astream.read(ain); bstream.read(bin)
For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++;
int prev_ain=ain; astream.read(ain);
assert(prev_ain<=ain);
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Merge with Order Assertion

* When composed
— Every downstream merger checks work of

predecessor
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What do with Assertions?

+ Include logic during testing (verification)

* Omit once tested
— Compiler/library/macros (#define) omit code
— Keep in source code

+ Maybe even synthesize to gate logic for
FPGA testing

* When assertion fail
— Count
— Break
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program for debugging (dump core)
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Merge Requirement
Require: astream, bstream sorted

Requirement that input be sorted is good

— And not hard to check

Not comprehensive

— Weaker than saying output is a sorted version of
input

What errors would it allow?
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Assertion Roles

+ Specification (maybe partial)

— May address state that doesn'’t exist in gold

reference

» Documentation
— This is what | expect to be true

+» Needs to remain true as modify in the future
Defensive programming
— Catch violation of input requirements
+ Catch unexpected events, inputs
Early failure detection

™
%]

= essNfglidatethat somethinag isn’t happening
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Peni

n ES

Assertion Discipline

* Worthwhile discipline

— Consider and document input/usage
requirements

— Consider and document properties that
must always hold

» Good to write those down
— As precisely as possible
» Good to check assumptions hold
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Prove Equivalence

* Testing is a subset of Verification

 Testing can only prove the presence of
bugs, not the absence.

» Depends on picking an adequate set of
tests

» Can we guarantee that all behaviors are
the correct? Same as reference?
Seen all possible behaviors?
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. . Day 19
Testing with Reference

Specification
Validate the design by testing it:
* Create a set of test inputs
* Apply test inputs

— To implementation under test
— To reference specification

+ Collect response outputs
* Check if outputs match
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Equivalence Proof

FSM
Part 2
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Idea

» Reason about all behaviors
— Response to all possible inputs

* Try to find if there is any way to reach
disagreement with specification

 Or can prove that they always agree

« Still demands specification
—...but we can also relax that with assertions
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Formal Equivalence with
Reference Specification

Validate the design by proving
equivalence between:

+ implementation under consideration
« reference specification
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Testing FSM Equivalence

» Exhaustive:
— Generate all strings of length |state|
* (for larger FSM = the one with the most states)
— Feed to both FSMs with these strings
— Observe any differences?
* How many such strings?

— (N binary input bits to FSM, S states)
—_2N's
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Penn

Compare

+ Start with golden model setup || *** oo
— Run both and compare output . ‘ |

» Create composite FSM
— Start with both FSMs FSM1
— Connect common inputs
together (Feed both FSMs)
— XOR together outputs of two
FSMs

« Xor's will be 1 if they disagree,
0 otherwise
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Penn

Creating Composite I
FSM [
» Assume know start state for each FSM w
» Each state in composite is labeled by

the pair {S1;, S2}}

— How many such states?
« Startin {S1o, S20}
» For each input a, create a new edge:

— T(a,{S10, S2})~> {S1, S2}

« If T4(a, S19)> S1;and Ta(a, S20)> S2;

» Repeat for each composite state reached

ESE5320 Fall 2022

DeHor 29

29

Peni

FSM Equivalence

« lllustrate with concrete model of FSM
equivalence

— Is some implementation FSM
— Equivalent to reference FSM
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Compare

» Create composite FSM
— Start with both FSMs
— Connect common inputs together (Feed both FSMs)
— XOR together outputs of two FSMs
« Xor's will be 1 if they disagree, 0 otherwise
+ Ask if the new machine ever generate a 1 on an
xor output (signal disagreement)
— Any 1 is a proof of non-equivalence
— Never produce a 1 - equivalent
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Penn ESE5320 Fall 2022

Composite FSM

* How much work?
 Hint:
— Maximum number of composite states
(state pairs)

— Maximum number of edges from each
state pair?

—  Work per edge?

DeHor
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Composite FSM

* Work
At most |2N|*|State1|*|State2| edges ==
work
» Can group together original edges
—i.e. in each state compute intersections of
outgoing edges
— Really at most |E1|*|E2|
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Non-Equivalence

+ State {S1;, S2} demonstrates non-
equivalence i#f
—{S1;, S2j} reachable

— On some input, State S1;and S2; produce
different outputs

* If S1;and S2;have the same outputs for
all composite states, it is impossible to
distinguish the machines
— They are equivalent
» A reachable state with differing outputs
o eseenn=dmOplies the machines are not identical 32
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Answering Reachability

« Start at composite start state {S1y, S2,}
 Search for path to a differing state
* Use any search
— Breadth-First Search, Depth-First Search
* End when find differing state
— Not equivalent
* OR when have explored entire
reachable graph without finding
— Are equivalent
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Reachability Search

* Worst: explore all edges at most once
— O(IEN=O(|E4[*|E2|)

» Can combine composition construction
and search
—i.e. only follow edges which fill-in as search
— (way described)

33
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Preclass 3

1/0

- Means don’t-care. Can read as (0 or 1) here.
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Creating Composite FSM

» Assume know start state for each FSM
+ Each state in composite is labeled by the pair
{S1;, S2}}
« Startin {S1o, S20}
* For each symbol a, create a new edge:
— T(a,{S10, S2})~> {S1;, S2}
* If T4(a, S19)> S1; and Ta(a, S2p)> S2;

« Check that both state machines produce same outputs
on input symbol a

» Repeat for each composite state reached

35
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Preclass 4
i State NextState o
0 S0 S1 0
1 80 S2 0
0 s1 s3 1
181 sS4 0
0 82 sS4 0
182 sS4 1
- 83 S5 0
- 54 S5 0
- 85 SO 0
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Assertion Failure Reachability

« Can use with assertions

« |s assertion failure reachable?

— Can identify a path (a sequence of inputs)
that leads to an assertion failure?
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Timing

Part 3
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FSM - Model Checking

» FSM case simple — only deal with states

» More general, need to deal with
— operators (add, multiply, divide)
— Wide word registers in datapath
+ Cause state exponential in register bits

* Tricks
— Treat operators symbolically
* Separate operator verification from control verif.
— Abstract out operator width
« Similar flavor of case-based search
pon s ONditionals need to be evaluated symbolicallyg
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Formal Equivalence Checking

« Rich set of work on formal models for
equivalence

— Challenges and innovations to making
search tractable

— Used with processor validation
» Common versions

— Model Checking (2007 Turing Award)
— Bounded Model Checking
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Issues

+ Cycle-by-cycle specification can be
overspecified

+ Golden Reference Specification not run
at target speed
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Penn ES

Tokens

» Use data presence to indicate when
producing a value
* Only compare corresponding outputs

— Only store present outputs from
computations, since that's all comparing

* Relevant non-Real-Time
» Examples?
— (not want to match cycle-by-cycle)
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Challenge

» Cannot record at full implementation rate

— Inadequate bandwidth to
« Store off to disk
* Get out of chip

+ Cannot record all the data you might want
to compare at full rate
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Bursts to Memory

* Run in bursts

* Repeat
— Enable computation
— Run at full rate storing to memory buffer
— Stall computation

— Offload memory buffer at (lower) available
bandwidth

— (possibly check against golden model)
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Timing
* Record timestamp from implementation
« Allow reference specification to specify
its time stamps
— “Model this as taking one cycle”

— Or requirements on its timestamps
* This must occur before cycle 63
« This must occur between cycle 60 and 65

» Compare values and times
* More relevant Real Time

» Example Real Time where exact cycle
-nat.malter? What does?
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At Speed Testing

» Compiled assertions might help

— Perform the check at full rate so don’t need
to record

 Capture bursts to on-chip memory
— Higher bandwidth

— ...but limited capacity, so cannot operate
continuously
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Generalize

Low speed, sequential load

* Generalize to
input and output

* Feed from memories 2
* Compute full rate
* Write into memory

s —

re
in Memory

Low speed, sequential offlpad

AXI Bus

» Can run at high rate for number of
cycles can store inputs and outputs
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Generalize

Low speed, sequential load

Generalize to
input and output

Feed from memories
Compute full rate
Write into memory

High Operator
Under
Test

re s- —
in Memory

Low speed, sequential offlpad

AXI Bus

What might this fail to test?
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* Issue

Low speed, sequential load

Burst Testing =

— May only see high speed for
computation/interactions that occur within a
burst period

— May miss interaction at burst boundaries

» Mitigation

— Rerun with multiple burst boundary offsets
— So all interactions occur within some burst
— Decorrelate interaction and burst boundary
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Timing Validation

» Doesn’t need to be all testing either

+ Static Timing Analysis to determine
viable clock frequency
— As Vivado is providing for you

* Cycle estimates as get from Vivado
—1I, to evaluate a function

* Worst-Case Execution Time for
software
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Learn More

» CIS6730 — Computer Aided Verification

+ CIS5410 —includes verification for real-
time system properties

+ CIS5000 — Software Foundations
— Has mechanized proofs, proof checkers
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Decompose Verification

Breaks into two pieces:
1. Does it function correctly?
2. What speed does it operate it?

— Does it continue to work correctly at that
speed?
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Big ldeas

Assertions valuable

— Reason about requirements and invariants
— Explicitly validate

Formally validate equivalence when
possible

Valuable to decompose testing

— Functionality

— Functionality at performance

...we can extend techniques to address
timing and support at-speed tests
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Feedback

Reading for Monday on Canvas

P2 due Friday
P3 out

CIS6730 — closer to flavor or part1,2

today

Admin
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