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Today
Real Time
• Part 1: Synchronous Reactive Model
• Part 2: Interrupts and IO

– Polling alternative
– Timer?

• Part 3: Resource Scheduling Graphs
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Message
• Scheduling is key to real time

– Analysis
– Guarantees 

Penn ESE5320 Fall 2022 -- DeHon 3

3

Synchronous Circuit Model
• A simple synchronous circuit is a good 

“model” for real-time task
– Run at fixed clock rate
– Take input every cycle
– Produce output every cycle
– Complete computation between input and 

output
– Designed to run at fixed-frequency

• Critical path meets frequency requirement
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Synchronous Reactive Model

• Discipline for Real-Time tasks
• Embodies “synchronous circuit model”
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Synchronous Reactive
• There is a rate for interaction with external 

world (like the clock)
• Computation scheduled around these clock 

ticks (or time-slices)
– Continuously running threads
– Each thread performs action per tick

• Inputs and outputs processed at this rate
• Computation can “react” to events

– Reactions finite and processed before next tick
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Thread Form

while (1) { tick(); }

• tick() -- yields after doing its work
– Until next master cycle
– May be state machine

• May change state and have different behavior 
based on state

– May trigger actions to respond to events 
(inputs)
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Thread Model
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Tick Rate

• Driven by application – demands of 
external control
– Control loop 100 Hz

• Robot, airplane, car, manufacturing plant
– Video at 33 fps 
– Game with 20ms response
– Router with 1ms packet latency

• 12µs
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Tick Rate
• Multiple rates

– May need master tick as least-common 
multiple of set of interaction rates
• …and lower freq. events scheduled less 

frequently
– E.g. 100Hz control loop and 33Hz video

• Master at 10ms
• Schedule video over 3 10ms time-slots

– May force decompose into tasks fit into 
smaller time window since must schedule 
events at highest frequencyPenn ESE5320 Fall 2022 -- DeHon 10
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Synchronous Reactive
• Ideal model

– Per tick reaction (task processing) instantaneous
• Separate function from compute time
• Separate function from technology

– Feature size, processor mapped to
• Like synchronous circuit

– If logic correct, works when run clock slow 
enough

– Works functionally when change technology
– Then focus on reducing critical path

• ! making timing workPenn ESE5320 Fall 2022 -- DeHon 11
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Timing and Function

• Why want to separate function from 
technology and timing?

• Move to slower processor(s):
– What would happen if just moved?
– What needs to happen?

• Move to faster processor(s):
– What would happen if just moved?
– What want to happen?
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Synchronous Reactive Timing
• Once functional, 

– need to guarantee all tasks (in all states) 
• Can complete in tick time-slot
• On particular target architecture

• Identify WCET (worst-case execution time)
– Like critical path in FSM circuit
– Time of task on processor target
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Preclass 1

• Time available to process objects?
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Preclass 1
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• Worst-case object 
processing time?
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Preclass 1

• Maximum number of objects on single 
GHz processor?
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Synchronous Reactive Timing
• Once functional, 

– need to guarantee all tasks (in all states) 
can complete in tick time-slot

– On particular target architecture
• Identify WCET

– Like critical path in FSM circuit
– Time of task on processor target

• Schedule onto platform 
– Threads onto processor(s)
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Threads Mapped to Processor
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Platforms

• Platform 1: 
fast processor

• Platform 2: 
many slow 
processors
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Synchronous Reactive Model

• Discipline for Real-time tasks
• Embodies the “synchronous circuit model”

– Master clock rate
– Computation decomposed per clock
– Functionality assuming instantaneous 

compute
– On platform, guarantee runs fast enough to 

complete critical path at “clock” rate

Penn ESE5320 Fall 2022 -- DeHon 20

20

Interrupts and IO

Part 2
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Interrupt

• External event that redirects processor 
flow of control

• Typically forces a thread switch
• Common for I/O, Timers

– Indicate a need for attention
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Interrupts

• Why would we use interrupts for I/O?
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Interrupts: Good

• Allow processor to run some other work
• Infrequent, irregular task service with 

low response service latency
– Low latency
– Ok when low throughput inputs 

• So infrequent interrupts…
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Interrupts: Bad
• Time predictability

– Real-time for computing tasks interrupted
• Processor usage

– Costs time to switch contexts
• Concurrency management

– Must deal with tasks executing non-
atomically 
• Interleave of interrupted service tasks
• Perhaps interleave of any task
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Interrupted Task

• Add to list
atmp=a
new->next =atmp
a=new

• Remove from list
removed=a->value
rtmp=a->next
a=rtmp

• Running something 
that removes from 
list

• Interrupt involves 
adding to list
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value next value next value next

a 23 34 18
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What can happen?

• Add to list
atmp=a
new->next =atmp
a=new

• Remove from list
removed=a->value
rtmp=a->next
a=rtmp

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp
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What goes wrong?
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What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp
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What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp
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What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp
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What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp
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Interrupts: Bad
• Time predictability

– Real-time for computing tasks interrupted
• Processor usage

– Costs time to switch contexts
• Concurrency management

– Must deal with tasks executing non-
atomically 
• Interleave of interrupted service tasks
• Perhaps interleave of any task
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Polling Discipline
• Alternate to I/O interrupts
• Every I/O task is a thread
• Budget time and rate it needs to run

– E.g. 10,000 cycles every 5ms
– Likely tied to 

• Buffer sizes
• Response latency

• Schedule I/O threads as real-time tasks
– Some can be DMA channels
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IO Thread

while (1) { process_input(); }

• Like tick() -- yields after doing its work
– Wait for next master cycle
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Preclass 2

• Input at 100KB/s
• 30ms time-slot window
• Size of buffer?
• 100 cycles/byte, GHz processor –

runtime of service routine?
– Fraction of processor capacity?
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Scheduling I/O Tasks

Penn ESE5320 Fall 2022 -- DeHon 36

36



7

Timer Interrupts

• Why do we have timer interrupts in 
conventional operating systems?
– E.g. in linux?
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Timer Interrupts
• Best effort tasks (i.e. non-real-time tasks)

– Have no guarantee to finish in bounded time
– Timer interrupts necessary 

• to allow other threads to run
• fairness
• to switch to real-time service tasks

• Need timer interrupts if need to share 
processor with best-effort and real-time 
threads
– Alternate: Easier to segregate real-time and 

best-effort threads onto different processorsPenn ESE5320 Fall 2022 -- DeHon 38
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Timer Interrupts?

• Bounded-time tasks
– E.g. reactive tasks in real-time
– Task has guarantee to release processor 

within time window
– Not need timer interrupts to regain control 

from task
– (Maybe use deadline operations [Day24] 

for timer)
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Greedy Strategy

• Schedule real-time tasks
– Scheduled based on worst-case, so may 

not use all time allocated
• Run best-effort tasks at end of time-

slice after complete real-time tasks
– Timer-interrupt to recover processor in time 

for start of next scheduling time slot
• (adds complexity)
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Real-Time Tasks

• Interrupts less attractive
– More disruptive

• Scheduled polling better predictability
• Fits with Synchronous Reactive Model
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Resource Scheduling Graphs
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Scheduling

• Useful to think about scheduling a 
processor by task usage

• Useful to budget and co-schedule 
required resources
– Bus
– Memory port
– DMA channel
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Simple Task Model

• Task requires
– Data to be 

transferred
– Local storage state
– Computational 

cycles
– (Result data to be 

transferred)

• Uses resources
– Bus/channel to 

transfer data
• (in and out)

– Space in memory on 
accelerator

– Cycles on accelerator
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One Task
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P1
P2
Bus
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Several Tasks

Penn ESE5320 Fall 2022 -- DeHon 46

Reso
urce

0 1 2 3 4 5 6 7 8

P1
P2
Bus
Mem

46

Resource Schedule Graph
• Extend as necessary to capture 

potentially limiting resources and usage
– Regions in memories
– Memory ports
– I/O channels
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Extended Details
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Several Tasks
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Approach

• Ideal/initial – look at processing 
requirements
– Resource bound on processing

• Look for bottlenecks / limits with Resource 
Bounds independently
– Add buses, memories, etc.

• Plan/schedule with Resource Schedule 
Graph
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Preclass 3a
• Resource Bound

– Data movement over bus?
– Compute on 2 processors?
– Compute on 2 processors when processor 

must wait while local memory is written?
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Task Data (bytes) Compute 
cycles

Data+Compute
Work

A 1600 1600
B 200 600
C 800 3200
D 200 600
E 400 400
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Resource Bound wait Transfer

• Total processor cycles when processor 
must idle during transfer
– Cyclesproc =∑ 𝐶𝑜𝑚𝑝 𝑖 + 𝐵𝑦𝑡𝑒𝑠[𝑖]

• RBproc=(Cyclesproc)/2
• RBbus= ∑ 𝐵𝑦𝑡𝑒𝑠[𝑖]
• RB=max(Rbbus, RBproc)
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Preclass 3b Schedule

• Processor wait for data load
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Double Buffering
• Common trick to overlap compute and 

communication
• Reserve two buffers input (output)
• Alternate buffer use for input
• Producer fills one buffer while consumer 

working from the other
• Swap between tasks
• Tradeoff memory for concurrency 
• Sub-buffers in Vitis clEnqueueMigrateObjects
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Double Buffer
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BRAM

Buf0 Buf1
Producer Consumer

Even cycles:

Odd Cycles:

Buf0 Buf1
Consumer
read from 1

Buf0 Buf1
Producer
write into 1

Consumer
read from 0

Producer
write into 0
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Double Buffer Schedule

• How impact 
schedule?
– When can move data 

into buffer?
• Hint: think about how 

impact preclass 3b 
schedule?  What new 
freedom have?

– Impact on use of 
processor?
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BRAM
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Preclass 3c Schedule

• Double Buffer
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Minimum local memory space required?
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Resource Schedule Graphs

• Useful to plan/visualize resource 
sharing and bottlenecks in SoC

• Supports scheduling
• Necessary for real-time scheduling
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Big Ideas:
• Scheduling is key to real time

– Analysis, Guarantees 
• Synchronous Reactive

– Scheduling worst-case tasks “reactions” 
into master time-slice matching rate

– Separate function from timing
• Schedule I/O with polling threads

– Avoid interrupts
• Schedule dependent resources

– Buses, memory ports, memory regions…
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Admin
• Feedback
• Wolf Lecture Wednesday at 3pm

– Tsu-Jae King Liu
– Sustaining the Semiconductor Revolution

• Reading for Monday online
• P4 due Friday
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