
1

Penn ESE5320 Fall 2022 -- DeHon 1

ESE5320:
System-on-a-Chip Architecture

Day 25: November 30, 2022
Real-Time Scheduling

1

Penn ESE5320 Fall 2022 -- DeHon 2

Today
Real Time
• Part 1: Synchronous Reactive Model
• Part 2: Interrupts and IO

– Polling alternative
– Timer?

• Part 3: Resource Scheduling Graphs

2

Message
• Scheduling is key to real time

– Analysis
– Guarantees

Penn ESE5320 Fall 2022 -- DeHon 3

3

Synchronous Circuit Model
• A simple synchronous circuit is a good

“model” for real-time task
– Run at fixed clock rate
– Take input every cycle
– Produce output every cycle
– Complete computation between input and

output
– Designed to run at fixed-frequency

• Critical path meets frequency requirement
Penn ESE5320 Fall 2022 -- DeHon 4

4

Synchronous Reactive Model

• Discipline for Real-Time tasks
• Embodies “synchronous circuit model”

Penn ESE5320 Fall 2022 -- DeHon 5

5

Synchronous Reactive
• There is a rate for interaction with external

world (like the clock)
• Computation scheduled around these clock

ticks (or time-slices)
– Continuously running threads
– Each thread performs action per tick

• Inputs and outputs processed at this rate
• Computation can “react” to events

– Reactions finite and processed before next tick
Penn ESE5320 Fall 2022 -- DeHon 6

6

2

Thread Form

while (1) { tick(); }

• tick() -- yields after doing its work
– Until next master cycle
– May be state machine

• May change state and have different behavior
based on state

– May trigger actions to respond to events
(inputs)

Penn ESE5320 Fall 2022 -- DeHon 7

7

Thread Model

Penn ESE5320 Fall 2022 -- DeHon 8

8

Tick Rate

• Driven by application – demands of
external control
– Control loop 100 Hz

• Robot, airplane, car, manufacturing plant
– Video at 33 fps
– Game with 20ms response
– Router with 1ms packet latency

• 12µs

Penn ESE5320 Fall 2022 -- DeHon 9

9

Tick Rate
• Multiple rates

– May need master tick as least-common
multiple of set of interaction rates
• …and lower freq. events scheduled less

frequently
– E.g. 100Hz control loop and 33Hz video

• Master at 10ms
• Schedule video over 3 10ms time-slots

– May force decompose into tasks fit into
smaller time window since must schedule
events at highest frequencyPenn ESE5320 Fall 2022 -- DeHon 10

10

Synchronous Reactive
• Ideal model

– Per tick reaction (task processing) instantaneous
• Separate function from compute time
• Separate function from technology

– Feature size, processor mapped to
• Like synchronous circuit

– If logic correct, works when run clock slow
enough

– Works functionally when change technology
– Then focus on reducing critical path

• ! making timing workPenn ESE5320 Fall 2022 -- DeHon 11

11

Timing and Function

• Why want to separate function from
technology and timing?

• Move to slower processor(s):
– What would happen if just moved?
– What needs to happen?

• Move to faster processor(s):
– What would happen if just moved?
– What want to happen?

Penn ESE5320 Fall 2022 -- DeHon 12

12

3

Synchronous Reactive Timing
• Once functional,

– need to guarantee all tasks (in all states)
• Can complete in tick time-slot
• On particular target architecture

• Identify WCET (worst-case execution time)
– Like critical path in FSM circuit
– Time of task on processor target

Penn ESE5320 Fall 2022 -- DeHon 13

13

Preclass 1

• Time available to process objects?

Penn ESE5320 Fall 2022 -- DeHon 14

14

Preclass 1

Penn ESE5320 Fall 2022 -- DeHon 15

• Worst-case object
processing time?

15

Preclass 1

• Maximum number of objects on single
GHz processor?

Penn ESE5320 Fall 2022 -- DeHon 16

16

Synchronous Reactive Timing
• Once functional,

– need to guarantee all tasks (in all states)
can complete in tick time-slot

– On particular target architecture
• Identify WCET

– Like critical path in FSM circuit
– Time of task on processor target

• Schedule onto platform
– Threads onto processor(s)

Penn ESE5320 Fall 2022 -- DeHon 17

17

Threads Mapped to Processor

Penn ESE5320 Fall 2022 -- DeHon 18

18

4

Platforms

• Platform 1:
fast processor

• Platform 2:
many slow
processors

Penn ESE5320 Fall 2022 -- DeHon 19

19

Synchronous Reactive Model

• Discipline for Real-time tasks
• Embodies the “synchronous circuit model”

– Master clock rate
– Computation decomposed per clock
– Functionality assuming instantaneous

compute
– On platform, guarantee runs fast enough to

complete critical path at “clock” rate

Penn ESE5320 Fall 2022 -- DeHon 20

20

Interrupts and IO

Part 2

Penn ESE5320 Fall 2022 -- DeHon 21

21

Interrupt

• External event that redirects processor
flow of control

• Typically forces a thread switch
• Common for I/O, Timers

– Indicate a need for attention

Penn ESE5320 Fall 2022 -- DeHon 22

22

Interrupts

• Why would we use interrupts for I/O?

Penn ESE5320 Fall 2022 -- DeHon 23

23

Interrupts: Good

• Allow processor to run some other work
• Infrequent, irregular task service with

low response service latency
– Low latency
– Ok when low throughput inputs

• So infrequent interrupts…

Penn ESE5320 Fall 2022 -- DeHon 24

24

5

Interrupts: Bad
• Time predictability

– Real-time for computing tasks interrupted
• Processor usage

– Costs time to switch contexts
• Concurrency management

– Must deal with tasks executing non-
atomically
• Interleave of interrupted service tasks
• Perhaps interleave of any task

Penn ESE5320 Fall 2022 -- DeHon 25

25

Interrupted Task

• Add to list
atmp=a
new->next =atmp
a=new

• Remove from list
removed=a->value
rtmp=a->next
a=rtmp

• Running something
that removes from
list

• Interrupt involves
adding to list

Penn ESE5320 Fall 2022 -- DeHon 26

value next value next value next

a 23 34 18

26

What can happen?

• Add to list
atmp=a
new->next =atmp
a=new

• Remove from list
removed=a->value
rtmp=a->next
a=rtmp

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp

Penn ESE5320 Fall 2022 -- DeHon 27
What goes wrong?

27

What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp

Penn ESE5320 Fall 2022 -- DeHon 28
What goes wrong?

value next value next value next

a 23 34 18

value next value next value next
a 23 34 18

removed=23

rtmp

atmp

value nextnew
09

value next value next value next
a 23 34 18

removed=23

rtmp

value next value next value next

a 23 34 18

removed=23

rtmp

atmp

value next

new

09

28

What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp

Penn ESE5320 Fall 2022 -- DeHon 29
What goes wrong?

value next value next value next

a 23 34 18

value next value next value next
a 23 34 18

removed=23

rtmp

value next value next value next

a 23 34 18

removed=23

rtmp

atmp

value next

new

09

value next value next value next

a

23 34 18

removed=23

rtmp

atmp

value nextnew
09

29

What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp

Penn ESE5320 Fall 2022 -- DeHon 30

value next value next value next

a 23 34 18

value next value next value next

a 23 34 18

removed=23

rtmp

atmp

value next

new

09

value next value next

a 34 18

value next value next value next

a

23 34 18

removed=23

rtmp

atmp

value nextnew
09

30

6

What can happen?

• Sequence
removed=a->value
rtmp=a->next
– <interrupt>
atmp=a
new->next=atmp
a=new
– <return>
a=rtmp

Penn ESE5320 Fall 2022 -- DeHon 31

value next value next value next

a 23 34 18

value next value next

a 34 18

value next value next value next

a 34 1809

Got:

Intended:

31

Interrupts: Bad
• Time predictability

– Real-time for computing tasks interrupted
• Processor usage

– Costs time to switch contexts
• Concurrency management

– Must deal with tasks executing non-
atomically
• Interleave of interrupted service tasks
• Perhaps interleave of any task

Penn ESE5320 Fall 2022 -- DeHon 32

32

Polling Discipline
• Alternate to I/O interrupts
• Every I/O task is a thread
• Budget time and rate it needs to run

– E.g. 10,000 cycles every 5ms
– Likely tied to

• Buffer sizes
• Response latency

• Schedule I/O threads as real-time tasks
– Some can be DMA channels

Penn ESE5320 Fall 2022 -- DeHon 33

33

IO Thread

while (1) { process_input(); }

• Like tick() -- yields after doing its work
– Wait for next master cycle

Penn ESE5320 Fall 2022 -- DeHon 34

34

Preclass 2

• Input at 100KB/s
• 30ms time-slot window
• Size of buffer?
• 100 cycles/byte, GHz processor –

runtime of service routine?
– Fraction of processor capacity?

Penn ESE5320 Fall 2022 -- DeHon 35

35

Scheduling I/O Tasks

Penn ESE5320 Fall 2022 -- DeHon 36

36

7

Timer Interrupts

• Why do we have timer interrupts in
conventional operating systems?
– E.g. in linux?

Penn ESE5320 Fall 2022 -- DeHon 37

37

Timer Interrupts
• Best effort tasks (i.e. non-real-time tasks)

– Have no guarantee to finish in bounded time
– Timer interrupts necessary

• to allow other threads to run
• fairness
• to switch to real-time service tasks

• Need timer interrupts if need to share
processor with best-effort and real-time
threads
– Alternate: Easier to segregate real-time and

best-effort threads onto different processorsPenn ESE5320 Fall 2022 -- DeHon 38

38

Timer Interrupts?

• Bounded-time tasks
– E.g. reactive tasks in real-time
– Task has guarantee to release processor

within time window
– Not need timer interrupts to regain control

from task
– (Maybe use deadline operations [Day24]

for timer)

Penn ESE5320 Fall 2022 -- DeHon 39

39

Greedy Strategy

• Schedule real-time tasks
– Scheduled based on worst-case, so may

not use all time allocated
• Run best-effort tasks at end of time-

slice after complete real-time tasks
– Timer-interrupt to recover processor in time

for start of next scheduling time slot
• (adds complexity)

Penn ESE5320 Fall 2022 -- DeHon 40

40

Real-Time Tasks

• Interrupts less attractive
– More disruptive

• Scheduled polling better predictability
• Fits with Synchronous Reactive Model

Penn ESE5320 Fall 2022 -- DeHon 41

41

Resource Scheduling Graphs

Penn ESE5320 Fall 2022 -- DeHon 42

Part 3

42

8

Scheduling

• Useful to think about scheduling a
processor by task usage

• Useful to budget and co-schedule
required resources
– Bus
– Memory port
– DMA channel

Penn ESE5320 Fall 2022 -- DeHon 43

43

Simple Task Model

• Task requires
– Data to be

transferred
– Local storage state
– Computational

cycles
– (Result data to be

transferred)

• Uses resources
– Bus/channel to

transfer data
• (in and out)

– Space in memory on
accelerator

– Cycles on accelerator

Penn ESE5320 Fall 2022 -- DeHon 44

44

One Task

Penn ESE5320 Fall 2022 -- DeHon 45

P1
P2
Bus
Mem

45

Several Tasks

Penn ESE5320 Fall 2022 -- DeHon 46

Reso
urce

0 1 2 3 4 5 6 7 8

P1
P2
Bus
Mem

46

Resource Schedule Graph
• Extend as necessary to capture

potentially limiting resources and usage
– Regions in memories
– Memory ports
– I/O channels

Penn ESE5320 Fall 2022 -- DeHon 47

47

Extended Details

Penn ESE5320 Fall 2022 -- DeHon 48

Resou
rce

0 1 2 3 4 5 6 7 8

P1
P1 M0
P1 M1
P2
P2 M0
P2 M1
Bus1
Bus2
OCM
DRAM

48

9

Several Tasks

Penn ESE5320 Fall 2022 -- DeHon 49

Resou
rce

0 1 2 3 4 5 6 7 8

P1
P1 M0
P1 M1
P2
P2 M0
P2 M1
Bus1
Bus2
OCM
DRAM

49

Approach

• Ideal/initial – look at processing
requirements
– Resource bound on processing

• Look for bottlenecks / limits with Resource
Bounds independently
– Add buses, memories, etc.

• Plan/schedule with Resource Schedule
Graph

Penn ESE5320 Fall 2022 -- DeHon 50

50

Preclass 3a
• Resource Bound

– Data movement over bus?
– Compute on 2 processors?
– Compute on 2 processors when processor

must wait while local memory is written?

Penn ESE5320 Fall 2022 -- DeHon 51

Task Data (bytes) Compute
cycles

Data+Compute
Work

A 1600 1600
B 200 600
C 800 3200
D 200 600
E 400 400

51

Resource Bound wait Transfer

• Total processor cycles when processor
must idle during transfer
– Cyclesproc =∑ 𝐶𝑜𝑚𝑝 𝑖 + 𝐵𝑦𝑡𝑒𝑠[𝑖]

• RBproc=(Cyclesproc)/2
• RBbus= ∑ 𝐵𝑦𝑡𝑒𝑠[𝑖]
• RB=max(Rbbus, RBproc)

Penn ESE5320 Fall 2022 -- DeHon 52

52

Preclass 3b Schedule

• Processor wait for data load

Penn ESE5320 Fall 2022 -- DeHon 53

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

P
1
P
2
B

200 cycle intervals

53

Double Buffering
• Common trick to overlap compute and

communication
• Reserve two buffers input (output)
• Alternate buffer use for input
• Producer fills one buffer while consumer

working from the other
• Swap between tasks
• Tradeoff memory for concurrency
• Sub-buffers in Vitis clEnqueueMigrateObjects

Penn ESE5320 Fall 2022 -- DeHon 54

54

10

Double Buffer

Penn ESE5320 Fall 2022 -- DeHon 55

BRAM

Buf0 Buf1
Producer Consumer

Even cycles:

Odd Cycles:

Buf0 Buf1
Consumer
read from 1

Buf0 Buf1
Producer
write into 1

Consumer
read from 0

Producer
write into 0

55

Double Buffer Schedule

• How impact
schedule?
– When can move data

into buffer?
• Hint: think about how

impact preclass 3b
schedule? What new
freedom have?

– Impact on use of
processor?

Penn ESE5320 Fall 2022 -- DeHon 56

BRAM

Buf0 Buf1
Producer Consumer

Even cycles:

Odd Cycles:

Buf0 Buf1
Consumer
read from 1

Buf0 Buf1
Producer
write into 1

Consumer
read from 0

Producer
write into 0

56

Preclass 3c Schedule

• Double Buffer

Penn ESE5320 Fall 2022 -- DeHon 57
Minimum local memory space required?

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

P
1
P
2
B

200 cycle intervals

57

Resource Schedule Graphs

• Useful to plan/visualize resource
sharing and bottlenecks in SoC

• Supports scheduling
• Necessary for real-time scheduling

Penn ESE5320 Fall 2022 -- DeHon 58

58

Penn ESE5320 Fall 2022 -- DeHon 59

Big Ideas:
• Scheduling is key to real time

– Analysis, Guarantees
• Synchronous Reactive

– Scheduling worst-case tasks “reactions”
into master time-slice matching rate

– Separate function from timing
• Schedule I/O with polling threads

– Avoid interrupts
• Schedule dependent resources

– Buses, memory ports, memory regions…

59

Penn ESE5320 Fall 2022 -- DeHon 60

Admin
• Feedback
• Wolf Lecture Wednesday at 3pm

– Tsu-Jae King Liu
– Sustaining the Semiconductor Revolution

• Reading for Monday online
• P4 due Friday

60

