ESE5320 Fall 2022

University of Pennsylvania
Department of Electrical and System Engineering
System-on-a-Chip Architecture

ESE5320, Fall 2022 Design and Function Milestone Wednesday, November 2

Due: Friday, Nov. 11, 5:00PM

Group: Develop functional code. Identify design space options. Writeup (single turn-in for
group).

1. Identify major design space axes that could be explored for your implementation.

e For this milestone, aim for breadth (quantity of options)

e Each axis description can be 1-3 sentences. Identify challenge being addressed,
basic solution opportunity, and continuum. A single point in the design space is
not a continuum; except in rare cases, this should capture a range of potential
parameter values.

e Include a simple equation to illustrate ideal benefit (e.g., running N tasks in
parallel reduces runtime by a factor of N; T'(N) = T'(1)/N) and the associated
resource costs.

e Cover all operations except SHA that must be accelerated including commu-
nication among operators. (i.e., CDC, Deduplication, LZW, and communica-
tion/integration)

e You have four top-level options for SHA as noted on the next page which will
make some of your primary design choices there, so we do not ask you to detail
SHA here, but you should include communication with the SHA operations.

e Aim for at least 6 axes per operation. Identify a few associated with how opera-
tions interact with each other.

e Some of this should build on the parallelism opportunities you identified on the
previous milestone.

Ezxample from FFT design discussed in class.

Axis: | P, number of butterfly units.

Challenge: | Improving the throughput of the FFT

Opportunity: | Implement multiple hardware butterfly datapath units.

Continuum: | This can range from 1 to a fully spatial design with P =
% log(N) butterfly units.

Equation for Benefit: | Throughtput(P) = P x SingleButter flyT hroughput

Equation for Resources: | Resources(P) = P x SingleButter flyResources

ESE5320 Fall 2022

2. Refine your placeholder implementation into a functional implementation for the project
task that can run on a Zynqg ARM Cortex A53 processor and produce a valid com-
pressed output stream that works with the supplied decompressor. Integrate with the
provided ethernet input flow. Compress from ethernet input to SDCard output.

e The primary goal for this assignment is functionality. As such, you should focus
on a simple design that captures the necessary behavior.
e As a result, this design need not be efficiently synthesizable to hardware.

e However, you will eventually be optimizing this design and likely exploring HLS
mappings to hardware. So, given a choice, you might want to use design constructs
and idioms that you know will be more amenable to HLS hardware mappings.

e Alternately, you should be prepared to rewrite your code later for efficient hard-

ware mappings.

3. Turn in a tar or zip file with your functional code to the designated assignment com-
ponent in canvas.

4. Turn in a tar or zip file with binaries to support execution of your code to the designated
assignment component in canvas.
(a) The tar (or zip) files should include:
e encoder — binary for your encoder to run on the the Ultra96
(b) Your encoder should take one argument:
e the file name where the program should store the compressed data.

5. Measure the raw ethernet performance from your host machine to your Ultra96 (See
Section 13.1 in Project Handout).

6. Document your design.
(a) Code sources (e.g., URLs) for any open-source code you used as a starting point

or as a primary reference

(b) Current compression ratio and breakdown of contribution from deduplication and
from LZW compression.

Overall throughput (Gb/s) of your current implementation.

)
d) Description of all validation performed on your current functional implementation.
) Report the raw ethernet speed measurements (Problem 5).

)

Description of who did what. How did your team collaborate on the design,
implementation, and validation?

ESE5320 Fall 2022

7. Identify any challenges your group had in collaboration and design integration this
week and how you plan to address them for future weeks.
e This is not a question about technical status — that should be addressed above.

e This is for teamwork, coordination, collaboration, communication, and workflow
issues.

e These may be things you’ve overcome by submission but didn’t go as smoothly
as they should have.

e In the unlikely case that everything went perfectly, identify the things you did
that made it work well. For your future plans, look forward to next week to see
if the same techniques are applicable or if there are new challenges that might
require different or additional techniques for things to continue to go well.

SHA

You have four options for implementing SHA in your encoder pipeline:

e Writing serialized SHA-256 or SHA3-384 running on the ARM processor.
e Using the dedicated SHA3-384 unit in the Zynq Ultrascale.
e Using SHA3-384 NEON intrinsics.

e Implementing SHA-256 or SHA3-384 on FPGA using HLS (not until P3).

The specific option you choose will have implications on the maximum throughput you can
achieve for your encoder pipeline. Moreover, you will need to adjust your design accordingly
if you end up using the SHA3 unit, since it has a different digest size.

e You can find throughput comparisons of SHA3-384 on NEON and the dedicated SHA3
unit here: https://www.xilinx.com/support/documentation/white_papers/wpbl2-accel-cryp
pdf.

e You can find an example of how to use the SHA3 unit here: https://xilinx-wiki.
atlassian.net/wiki/spaces/A/pages/18841654/Linux+SHA+Driver+for+Zyng+Ultrascale+
MPSoC Note we have already enabled the SHA3 unit and user-space API in the new
platform. You will just need to write the driver.

e You can find software implementations that use NEON intrinsics here:

— https://github.com/james-ben/mpsoc-crypto
— https://github.com/noloader/SHA-Intrinsics

https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841654/Linux+SHA+Driver+for+Zynq+Ultrascale+MPSoC
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841654/Linux+SHA+Driver+for+Zynq+Ultrascale+MPSoC
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841654/Linux+SHA+Driver+for+Zynq+Ultrascale+MPSoC
https://github.com/james-ben/mpsoc-crypto
https://github.com/noloader/SHA-Intrinsics

ESE5320 Fall 2022

Multiple Cores

Recall from Homework 3 that you can utilize multiple cores using std: :threads. There are
four cores (ARM Cortex-Ab53) on the Ultra96. Moreover, recall that each core on the Ultra96
has one 64-bit NEON SIMD unit with 128-bit registers that you can utilize simultaneously
with std: :threads.

ESE5320 Fall 2022

FPGA Acceleration Tutorial: Bloom Filter

Using bloom filter as the application, this tutorial shows you:

e a significant speedup (8x) when computations are offloaded on the FPGA efficiently.

e how to write an HLS kernel for a CPU implementation (using ap_uint, hls::stream,
and pragmas).

e how to achieve communication-compute overlap using sub-buffers.

1. Clone the ese532_code repository using the following command:

git clone https://github.com/icgrp/eseb32_code.git

If you already have it cloned, pull in the latest changes using:

cd eseb32_code/
git pull origin master

The code you will use for this section is in the vitis_tutorials/bloom directory. The
directory structure looks like this:

bloom/

cpu/

fpga/
MurmurHash2.c
common.h
compute_score_fpga_kernel.cpp
compute_score_host.cpp
hls_stream_utils.h
main.cpp
sizes.h
xcl2.cpp
xcl2.hpp

The cpu folder has a standalone CPU implementation of the bloom filter, which you
can compile using the Vitis GUI flow from P2 and run it. The main.cpp code in the
fpga folder has the OpenCL host code. The top level HLS function is in
compute_score_fpga kernel.cpp. We will now show how to use the Vitis GUI flow
to compile OpenCL and HLS code.

ESE5320

2. Create or use an existing workspace, create a new application project
provided platform.

se Launcher

Select a directory as workspace

Vitis IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | /media/lilbirb/research/codefese532_code/project =~ Browse...

Use this as the default and do not ask again

» Restore other Workspace
~ Recent Workspaces

02-bloom

projects

concurrent kernel execution
linux files
app

Cancel Launch

New Application Project
Platform
p! from hardware

+ Add £ Manage

Choos:

e a platform for your project. You can also create lication f
(XSA)' tab.

XSA through the ‘Create a

Select a platform from repository ;; Create a new platform from hardware (XSA)
Find: ®
Name B

a F ven
[ieses32_hwo_pfm [custom] ULTRA96V:| Embedded Accel

Path
/media/llbirb/research/git/avnet/petalinux/projec

PlatForm Info

General Info Acceleration Resources Domain Details-

Name: eses32 hws pfm clock Frequencies Domains
3 | TSR ey [METE] Domain name Details
Fart reanseashiadeiti ceu 1200.000000 | jnuy on psu_cortexas3 CPU: cortex-as3
Family: zynquplus PLO 150.000000 i
pescription: LT 300.000000
PL2 75.000000
eses32_hws_pfm PL3 100.000000
PL4 200.000000
PLS 400.000000
PL6 600.000000
@ <Back Next>

Ccancel F

Fall 2022

and use the

3. Choose Empty Application from the SW acceleration templates as follows:

New Application Project

Templates E

select a template to create your project.

Available Templates:

Find: Empty Application
~ SW acceleration templates
Empty Application

Vector Addition

~ SW development templates
Empty Application (C+4)
Linux Empty Application
Linux Hello World

Creates anew Empty application

Vitis IDE Examples... || Vitis IDE Libraries...

<Back ext cancel Finish

ESE5320 Fall 2022

4. Right-click on the src folder and click on import sources. Import the source files for
this project as follows:

Import Sources o &

File system =

Import resources from the local file system. & /A
From directory: /media/lilbirb/research/code/ese532_code/vitis_tutorials/bll ~ Browse...

16 compute_score_host.cpp
[hls_stream_utils.h
[€ main.cpp
[€] MurmurHash2.c
[l sizes.h
€ xcl2.cpp
[& xcl2.hpp

Filter Types... Select All Deselect All
Into Folder: | bloom/src Browse...
Options

Overwrite existing resources without warning
Create top-level Folder

Advanced >>

@ Cancel Finish

5. Click on bloom.prj from the Explorer and change the Active build configuration
to Hardware as shown below:

vitis_workspace - bloom/bloom.prj - Vitis IDE

File Edit Search Xilinx Project Window Help

0~ RIS R RS - ERCIRCEE Quick Access

<. Explorer zg} 5% v = 8 ||z bloom_system [%blnom sz} = 5 [outlin

~ [> bloom_system [ese532_code master] [ese532_hwé_pfm] i Application Project Settings Active build configuratifff Hardware w | [Anoutline
£3 >bloom [ese532_code master] [linux on psu_cortexas3]

» &l Includes General Options
» @7 > Emulation-HW

i ! Project name: bloom Target: Hardware
} 4 > Emulation-SW
: p :
} & - Hardware PlatForm: ese532 hwe pfm Host debug: O
Runtime: OpencL. e
24 bloom.prj . S Kernel debugmode Wavererm
agm D Report level: Default ~
Hardware optimization: Default optimization (-00) ~
Hardware Functions B E £

Name Compute Units Port Data width

Max Memory Ports

dAssistantzﬂ B @] 0% ¥ =0 W

~ (= bloom_system [System]
loom [Embedded OpencL]
2 Emulation-SW [Software Emulation]

4 Emulation-HW [Hardware Emulation]
“ Hardware [Hardware]

(E\ Console sz]l'_ Problems [E] Vitis Log (i) Guidance 4 08 ERE-EBE mBydy =0 MEI Emulation Console zﬂ
6. Add an xclbin container by clicking on the button circled in red below. Rename the

7

ESE5320 Fall 2022

container to runOnfpga_hw by clicking on the name binary_container_1. This is the
xclbin name that the host code uses.

vitis_workspace - bloom/bloo

File Edit Search Xilinx Project Window Help

g~ B-R it -0~ DB Quick Access || [2 Design |45 Debug
<. Explorer m} 2% v = 0 | & bloom_system [g bloom zz}@ e = o |[o outline zz} =
~ [79 > bloom_system [eses32_code master] [eses32_hwo_pfm] || i« Application Project Settings

Active build configuration: | Hardware | ||Anoutlineis notavailable.
~ £} >bloom [ese532_code master] [linuxon psu_cortexas3]

» &) Includes

General Options.

» € > EmulationHw projectname: bloom Target: Hardware

» 5 > Emulation-sw

» &2 > Hardware Platform: ese532 hwé pfm | ~ Host debug: O

~ el esic Runtime: OpencL Kernel debug
» B commonh e o e Kernel debug mode m
} [compute_score_fpga_kernel.cpp Report level: Default ~
» [compute_score_host.cpp - Default optimization (-00) -
» [hls_stream_utils.h

» [main.cpp

» [MurmurHash2.c
» [sizes.h

» [xcl2.cpp

» [xcl2.hpp

2 bloom.prj

Compute Units ~ Port Data Width Max Memory Ports

2 bloom_system.sprj

\‘Assistant}:ﬁ} EE&8R0% ¥ =0 1

~ &3 bloom [Embedded OpencL]
» < Emulation-SW [Software Emulation]
» & Emulation-HW [Hardware Emulation]
» % Hardware [Hardware]

2 console zz}\i Problems [vitis Log () Guidance o ¢ (S| & &R
Build Console [bloom_system, Emulation-sw]

2 -0 = 0 |(@euationconsole x| RB < <

Choose the runOnfpga function as the

7. Now click on the button circled in blue below.
hardware function.

ESE5320

Fall 2022

vitis_workspace - bloom/bloom.prj - Vitis IDE

ch xilinx Project

B iH-Oid~

B($w v = A8

stem [ese532_code master] [ese532_hw6_pfm]
[ese532_code master] [linux on psu_cortexas3]
es

lation-HW

lation-sw

iware

nmen.h
npute_score_fpga_kernel.cpp
npute_score_host.cpp
_stream_utils.h

in.cpp

rmurHash2.c

=s.h

.prj
ystem.sprj

EE&®K0% v‘:'ﬁw

:mbedded OpencL]

ition-SW [Software Emulation]
\tion-HW [Hardware Emulation]
vare [Hardware]

& blog

K Ap|

Gene
Proje
Platl

Runt

Hard

Naf

Add Hardware Functions o

Select anitem to open (2 =any character, * =any string): v

» More Options
Matchingitems:

© MurmurHash2(const void *, int, unsigned int) - MurmurHashz.c

@ MurmurHash2(unsigned int, int, unsigned int) - compute_score_fpga_kernel.cpp

© compute_hash_flags(hls::stream<ap_uint<int64>,int0> &, hls::stream<ap_uint<int256>,int0> &, unsigned int (*)[1¢

® compute_hash_flags_dataflow(ap_uint<int512>*, ap_uint<int512>*, unsigned int (*)[16384], unsigned int)

e doc_len()

o event_cb(?,2, void %)

o find_binary file(const std::__cxx11:basic_string<char,std::char_traits<char>,std::allocator<char>> &, const std::_
o get_devices(const std::_cxx11:basic_string<char,std::char_traits<chars,std::allocator<char>> &)

° devices()

B ary_File(std::_cxx11:basic_stringechar,std:char_traits<char>std::allocator<char>>)

© is_emulation()

o is_hw_emulation()

® is_xpr_device(const char *)

© main(int, char **)

® runOnCPU(unsigned int *, unsigned int *, unsigned int *, unsigned long int *, unsigned long int *, unsigned int, unsig
o nt<int512>*, unsigned int ¥, unsigned int, bool) - compute_score_fpga_kernel.
o set_callback(?, const char *)

o setupData()

runOnfpga(ap_uint<int512> *, ap_uint<int512> *, unsign...d int, bool) - bloom/src/compute_score_Fpga_kernel.cpp

Cancel oK

Quick Access

[Design

= 8 | % outline xl

figuration:| Ha

¢ &8

8. From the Assistant view, double click on Hardware as follows:

8 -~ = B |/EEemuationConsole 23}

ESE5320 Fall 2022

vitis_workspace - bloom/bloom.prj - V|

File Edit Search Xilinx Project Window Help

o BrA-it O I DO D
. Explorer S@} BiSegs ¥ = 0O £ bloom_system [% bloom S@} [main.cpp
~ [= bloom_system [ese532_code master] [ese532_hw6_pfm] % Application Project Settings
» {=+ > bloom [ese532_code master] [linux on psu_cortexa53]
» il Includes General Option
» .
b &z > Emulation-HwW Project name: bloom Target
b 25 = Emulation-sw
.
» £ > Hardware Platform ese532 hwé pfm Host d
v G5 >src Runtime: OpencL Kerne
b [# common.h e Kerne
Number of devices
» [5 compute_score_fpga_kernel.cpp Repor
5
b Ei compute_score_host.cpp Hardw
b [# hls_stream_utils.h
o
b £ main.cpp Hardware Functions
b [MurmurHash2.c
b [sizes.h Name Compute Units Port Data Width
b [xcl2.cpp + = runonfpga_hw
b [xcl2.hpp # runOnfpga 1 Auto
24 bloom.prj
% bloom_system.sprj
dAssistantS@} B @/ 0% - =0 1
v = bloom_system [System]
+ $if bloom [Embedded Opencl]
» 7 Emulation-SW [Software Emulation]
[== i s lation]
» 7 Hardware [Hardware]
& console SZ}LE Problems [E] vitis Log () Guidance 4 4[5 & BB
Build Console [bloom_system, Emulation-sw]

9. Click on Hardware—runOnfpga_hw—runOnfpga. This brings the screen where you can
specify the number of compute units, compiler options for the kernel, assign different
ports to inputs etc. Keep the defaults for now:

10

ESE5320 Fall 2022

Hardware Function Settings o

typefiltert... ® | @ # runoufpga

GvDvow
~ ©bloom_system Name: runonfpga
~ @ bloom
» @ Emulation-sw Compute units: +
» < Emulation-HW Max memory ports:
v < Hardware)
- & runonfpga hw POrt data width: Auto ¥
UL Extrasourcefiles:
V++compiler options:
Compute Unit Settings
Name Memory SLR ChipScope Debug Protocol Checker Data Transfer Execute Profiling Stall Profiling
~ # runOnfpga Auto Auto L] L] None L]
~ BBrunonfpga_1 Auto Auto [m] o None o o
“@output_flags Auto [u} o None
“=input_words Auto [m] o None
<bloom_filter Auto [u} o None
< total_size u}
= load _filter u}
Refresh
V++Compiler Command Line
${XILINX _VITIS}/bin/v++
= n
xc/compute_score_fpga_kernel.cpp"
Revert Apply
Cancel Applyand Close

10. Click on bloom.prj. Check out the Hardware optimization option where you can
change the optimization level for the hardware function. Additionally, recall from P2
that you can change the optimization level of the host code from the C/C++ build
settings. Now click on the build button on the menu bar to start compilation:

loom/bloom.

File Edit Search Xilix Project Window Help

o f-R-Pe-0-is-imng@ v~ Quick Access || [Z Design |4+ Debug

~L Explorer 231 B % e ¥ = O |[|&bloom system (x bloom zz} [@ maincpp [g compute_score_fpga_kernel.cpp = B ||g& outline zﬂ =0
~ [> bloom _system [eses32_code master] [eses32_hwe pfm] || i Application Project Settings
~ &} >bloom [ese532_code master] [linuxon psu_cortexas3]

» i Includes General Options

» 3 > Emulation-HW

» 5 > Emulation-sw

) &2 > Hardware Platform: ese532 hwé pfm | - Host debug: (]

Active build configuration:| Hardware ~ | ||Anoutlineis not available.

Project name: bloom Target: Hardware

v etssrc Runtime: OpencL Kernel debug
» B commonh e e Kerneldebugmode: | waveform
» [£ compute_score_fpga_kernel.cpp
» [compute_score_host.cpp
» [hls_stream_utils.h
» [main.cpp
» [MurmurHash2.c
b [sizesh
» [xcl2.cop
» [xcl2.hpp # runonfpga 1 Auto

I bloom_system.sprj

Report level: Default ~

Hardware optimi

Hardware Functions

Compute Units ~ Port Data Width Max Memory Ports

~J Assistant xx] B @/]QO0% ~ =0

~ ¢ bloom_system [System]
¥ & bloom [Embedded OpencL]
» & Emulation-SW [Software Emulation]
» < Emulation-HW [Hardware Emulation]

» < Hardware [Hardware]

& console xx}[Problems [E] vitis Log (D Guidance ¢4 EH #B8~8~- =8 HEEmulationConsole m} LY 5 al
Build Console [bloom, Hardware]

P

11

ESE5320 Fall 2022

11. Once the compilation completes, open the Hardware folder from the Explorer. The
binaries are in the package/sd_card folder.

File Edit Search Xilinx Project Window Help

“. Explorer 2@] EE e ¥ = B & bloom_system [5{ bloom 23] [¢] main.cpp [comput

~ [>bloom_system [ese532 _code master] [ese532_hw6_pfm] % Application Project Settings
+ &} >bloom [ese532_code master] [linuxon psu_cortexa53]

» il Includes General

» 25 > Emulation-Hw

Project name: bloom
» 7 >Emulation-Sw
+ &£ Hardware Platform: ese532 hwé pfm
~ £ package Runtime: OpenCL
Number of devices: | 1
2 bloom
= BOOT.BIN
2 boot.scr
E image.ub Hardware Functions
£ init.sh
2 platform_desc.txt Name Compute Units Port Data Wi
2/ runonfpga_hw.xclbin ~ = runonfpga_hw
| system.dtb # runonfpga 1
= BOOT.BIN
|2/ ese532_hwe6_pFm.bif
@ sd_card.img

» £ package.build
» £ runonfnoa hw build

\JAssistantE@W = @/ O #% ~ = B

~ =¥ bloom_system [System]
+ fuk bloom [Embedded Opencl]
» % Emulation-SW [Software Emulation]
» & Emulation-HW [Hardware Emulation]

» ;A Hardware [Hardware]

&l Console B@WL:::‘ Problems [Vitis Log (i) Guidance s
Build Console [bloom, Hardware]
T4ARPAYFN4AYR hvtes 11 5 BGR 1T 4 (TR ronied 5 349771 =

12. Copy the binaries and the xrt.ini to the Ultra96 as follows and then reboot the
Ultra96.

12

ESE5320

Fall 2022

init:sh platform_ runonfpg
desc.txt

a_ system.dtb
c.bxt hw.xclbin

lilbirb @stingy: /media/lilbirb/research/code/ese532_code/vitis_workspace /bloom/Hardware /package /sd_card

$ scp BOOT.BIN boot
@10.10.7.1's password:

0t@10.16.7.1:/mnt/sd-mncblkep1/
38.0MB/s

731.6KB/S

% 8117KB 33.0MB/s

45KB 4.5MB/s
00% 5468KB 43.2MB/s

00:00
00:00
00:00
1bin root@10.10.7.1:~/

00:00
00:00

13. Run the code using the following commands in the Ultra96:

ifconfig ethO 10.10.7.1 netmask 255.0.0.0
export XILINX_XRT=/usr
./bloom 40000 64

You should see the following output in the terminal:

root@ultra96v2-2020-1:~# ./bloom 40000 64
Initializing data
Creating documents - total size : 559.858 MBytes (139964416 words)
Creating profile weights

[1018.547572]
[1018.551450]
[1018.558627]

Loading runOnfpga_hw.

1018.617733]
1018.617765]
1018.633496]
1018.641197]
1018.652995]

Lo T e B e B s B e |

[drm]
[drm]
[drm]

[drm]
[drm]
[drm]
[drm]
[drm]

Pid 769 opened device

Pid 769 closed device

Pid 769 opened device

xclbin

zocl_xclbin_read_axlf The XCLBIN already loaded
zocl_xclbin_read_axlf 3c650f2f-9cc2-408a-8c92-0ec3bc33
bitstream 3c650f2f-9cc2-408a-8c92-0ec3bc335ce3 locked,
Reconfiguration not supported

bitstream 3c650f2f-9cc2-408a-8c92-0ec3bc335ce3 unlocke

Processing 559.858 MBytes of data
Splitting data in 64 sub-buffers of 8.748 MBytes for FPGA processing

[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate
[ooqueu] : Completed buffer migrate

13

ESE5320

[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
waiting...
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
waiting. ..
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
[ooqueu] :
waiting. ..

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate

migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate

migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate
migrate

Executed FPGA accelerated version
Executed Software-Only version

14

1414 .5707 ms
11779.4325 ms

Fall 2022

(FPGA 247.878 ms)

ESE5320 Fall 2022

Verification: PASS

14. The verbose outputs in the terminal is caused by the call set_callback(flagDone,
"oooqueue") ; in the host code. This is a helper function in xc12.hpp that prints out
the state of an OpenCL event. You can use it to debug OpenCL calls. In addition, you
can also use the OCL_CHECK macro from xc12.hpp to see if an OpenCL call succeeded.

15. Copy the generated run summary and csv files to your host computer and open vitis
analyzer. You can see overlap of kernel execution with data transfer and OpenCL API
calls.

P kernel.xclbin (System Run) X

summary % | Application Timeline x

Q Q @ ¥ oo MM o= o 4] *

20, 775,505 ms ~

[

Name Value 20, 765. 000000 ms 20, 770.000000 ms) 20, 775. 000000 ns 20, 780. 660000 ms

“~ Host

~ Open CLAPI calls
General 0 clsetkemelarg m } 1 N T AT A N N T S S T S — T

General 1 INACTIVE

Queve: 5509388750 mACTIE B B L T e B B B [| b | e e

~ Data Transfer

~ Read
Row 0 o] -

~ Write

Row 0 o

Row 1

* Kernel Enqueues 3

Row 0 runonfpga runcntpga

Row 1 runonfpga

Row 2 runonfpga
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13
Row 14
Row 16
Row 17
Row 18
Row 19
Row 20
Row 21
Row 22
Row 23
Row 24

16. If you scroll forward in the timeline, you can see overlap between computation in the
cpu and the fpga as shown below.

15

ESE5320 Fall 2022

P kernel.xclbin (System Run) x

Summary X Application Timeline X

Q @ a M = 4
Name Value QBJITU‘B‘U‘UBBIUD ‘ms L QBJIEU‘B‘U‘UBBIUD ‘ms L |234IEU‘B‘U‘DBBIUD ‘ms L 214IUU‘B‘U‘DBBIUD ‘ms L 21110‘0‘0‘000'00 ‘ms L
~ Host
 Open CL API Calls /-— —\
eneral 0 nAcTE A — 1 1 —
General 1 INACTIVE | FHH } }
Queus: 55C93B5730 INACTIVE 11T T m—
~ Data Transfer
~ Read
Row 0 MOHOHK" HHHHH A
v Write
Ran 0 L o
Row 1 Rrthteriive
¥ el Engueues N 11 1 1013330303 01 30512 3 030G A DA sz
Row O .
Row 1
Row 2 e no... runOnfpga
Row 3
Row 4
Row 5
Row 6 runCnfpaa
Row 7
Row 8
Row 9 runOnfpga runnfpaa
Row 10 runOnfpga runOnfpga
Row 11 runOnfpga runOnfpga
Row 12 runOnfpga runOnfpga
Row 13 runOnfpga runOnfpaa
Row 14 runonipga runontpga
Row 15 runOntpga runOnfpga
o1
Fow17
Row 15
Row19
Raw 20
Fow 21
Row 22
Fow 23
Fow 24

From the output in 13, these calls correspond to the waiting... print outs. You can
check in the host code, how we wait for a cl::Event to finish based on a condition,
and when the event notifies that it’s finished, we start executing the cpu code, so that
it overlaps with the fpga execution:

needed += size;
if (needed > available) {
clWaitForEvents (1, (const cl_event *) &flagWait[iter]);

std::cout << "waiting..." << std::endl;
available += subbuf_doc_info[iter].size / sizeof (uint);
iter++;

b

17. Now run with a different ITER value and look at the updated trace:

./bloom 40000 128

16

ESE5320 Fall 2022

Q @ a I« I + o

Name Value 20, 780. 000006 ns 20, 796. 000000 ns 20, 500. 000006 ms 20, 816. 660000 ms 20, 620.000000 ms

Host
Open CL &P| Calls
General |0 INACTIVE E I = = H _I I I I I } =
General |1 INACTIVE

'l 1

Data Transfer

Read
Row0 : ” e e A I S IR [y Iy Sy B
‘write
Row 0 "I00000COCEE" B
Row L " 4
Kernel Enquaues 1

Row O runonfpga
Row 1
Row 2
Row 3
Row 4

Device "edge-0"
Binary Containe...y_container_1"

You can see that since the kernel execution time gets smaller as you increase the
iteration number, the next kernel execution starts almost immediately.

18. Running a sweep on the number of iterations, we see that ITER=32 is the most perfor-
mant for this design:

./bloom 40000 8
Executed FPGA accelerated version | 1413.3252 ms (FPGA 305.796 ms)
Executed Software-Only version | 11780.3703 ms

Verification: PASS

./bloom 40000 16
Executed FPGA accelerated version | 1396.5072 ms (FPGA 298.034 ms)
Executed Software-Only version | 11770.1858 ms

Verification: PASS

./bloom 40000 32
Executed FPGA accelerated version | 1391.2062 ms (FPGA 284.336 ms)
Executed Software-Only version | 11768.1306 ms

Verification: PASS

./bloom 40000 64
Executed FPGA accelerated version | 1414.5707 ms (FPGA 247.878 ms)
Executed Software-Only version | 11779.4325 ms

Verification: PASS

17

ESE5320 Fall 2022

./bloom 40000 128
Executed FPGA accelerated version | 1458.1155 ms (FPGA 179.195 ms)
Executed Software-Only version | 11782.2403 ms

Verification: PASS

./bloom 40000 256
Executed FPGA accelerated version | 1533.5603 ms (FPGA 10.701 ms)
Executed Software-Only version | 11798.4502 ms

Verification: PASS

19. This concludes a top-down walk-through of this tutorial. To learn more about this
design, read the following in-order:

(a) Overview of the Original Application
(b) Architect a Device-Accelerated Application
(¢) Implementing the Kernel
(d) Data Movement Between the Host and Kernel
Note that the tutorial is written for data center cards. Some of the parameter choices,
such as port data width, DDR memory etc. should be reconsidered for the Ultra96

to get optimal performance (refer to this paper: Unexpected Diversity: Quantitative
Memory Analysis for Zynq UltraScale+ Systems).

Questions

If anything is unclear please post on Ed Discuss or come to office hours, and we will be glad
to assist.

18

https://github.com/Xilinx/Vitis-Tutorials/blob/2021.1/Hardware_Acceleration/Design_Tutorials/02-bloom/1_overview.md
https://github.com/Xilinx/Vitis-Tutorials/blob/2021.1/Hardware_Acceleration/Design_Tutorials/02-bloom/3_architect-the-application.md
https://github.com/Xilinx/Vitis-Tutorials/blob/2021.1/Hardware_Acceleration/Design_Tutorials/02-bloom/4_implement-kernel.md
https://github.com/Xilinx/Vitis-Tutorials/blob/2021.1/Hardware_Acceleration/Design_Tutorials/02-bloom/5_data-movement.md
https://ieeexplore.ieee.org/document/8977835
https://ieeexplore.ieee.org/document/8977835

