ESE5320 Fall 2022

University of Pennsylvania
Department of Electrical and System Engineering
System-on-a-Chip Architecture

ESE5320, Fall 2022 FPGA Milestone Wednesday, November 9

Due: Friday, Nov. 18, 5:00PM

Group: All work is group work. Single turn-in for group.

1. Move some part of your design onto the FPGA for acceleration.
Writeup should identify what you moved onto the FPGA, how you validated it, and
how you tuned it. Identify the current throughput achieved.

2. Use the supplied measurement routines (Tutorial 1) to report the input throughput to
your encoder in the writeup.

3. Use the supplied measurement routines to report the maximum real-time throughput
the current design can sustain in the writeup (Notice how you can use getProfilingInfo
on cl::Event to get the kernel execution time).

4. Turn in a tar file with your FPGA accelerated code to the designated assignment
component in canvas (one per group).

5. Turn in a tar or zip file with binaries to support execution of your code to the designated
assignment component in canvas (one per group).

(a) encoder.xclbin for FPGA kernel
(b) encoder for OpenCL host code executable

(c) decoder executable configured to work with your encoded file and that can be
run on the Ultra96. (Most likely, this is just a compilation of the Decoder.cpp
we supplied; however, if you chose a different maximum block size, you may need
to change CODE_LENGTH; so give us back one with that change made.)

Make sure to compile it with the aarch64-1linux-gnu-g++ compiler and test it
on the Ultra96. While you could run the decoder on your host machine (which
could be Linux/Mac OS/Windows), we will run your decoder on the Ultra96.

(d) client.sh shell script to invoke client with suitable —-s parameter to demonstrate
your guaranteed data transfer performance.

e Your compression program (OpenCL host code) should take one argument:
— the file name where the program should store the compressed data.

Your program should assume that encoder.xclbin is in the same directory as
the host executable.

e Your compression program should start up ready to receive inputs.

We don’t expect significant FPGA acceleration on this milestone, but we do want you to
start exploring acceleration options.

ESE5320 Fall 2022

Tutorials

1. Measuring Ethernet Throughput in the Encoder

In P2, you measured the raw ethernet throughput using iperf3 and got about 895
Mbits/s. Note that, by default iperf3 sent TCP packets to the receiver in the Ultra96,
whereas we are using UDP in the project, which is a faster protocol. We will now show
you how to measure the input throughput in your encoder.

(a) Compile the encoder code, copy the binary to the Ultra96 and run it.

(b) Download vmlinuz.tar from the Project handout. Compile the client code and
run the client with the supplied vmlinuz.tar file as follows:

./client -f vmlinuz.tar -i 10.10.7.1

(¢) You should see the following output in the Ultra96 terminal:

root@ultra96v2-2020-1:~# ./encoder.elf

setting up sever...

server setup complete!

write file with 69079040

——————————————— Key Throughputs --—————-—--———-

Input Throughput to Encoder: 1079.33 Mb/s. (Latency: 0.512015s).
root@ultra96v2-2020-1:"# diff vmlinuz.tar output_cpu.bin

You should see the following output in the host terminal:

filename is vmlinuz.tar
ip is set to 10.10.7.1
payload_size is 8192
bytes_read 69079040

(d) You can see that we are indeed getting about 1 Gb/s input throughput. You
can look into encoder.cpp and see that we are using a timer to measure the
total latency taken by the call: server.get_packet (input[writer]) (ignoring
the first call which waits for the first packet to arrive). Later in the code, we
calculated the throughput as follows:

float ethernet_latency = ethernet_timer.latency() / 1000.0;
float input_throughput = (bytes_written * 8 / 1000000.0) / ethernet_latency;
std::cout << "Input Throughput to Encoder: "

<< input_throughput << " Mb/s."

<< " (Latency: " << ethernet_latency << "s)."

<< std::endl;

ESE5320

Fall 2022

(e) Note that it is very important that you verify the output using diff. You can
lose packets if your encoder cannot keep up with the input throughput, in which
case you should use the —s option in the client to transfer at a lower speed.

2. Using Multiple Compute Units

The code you will use for this section is in the vitis_tutorials/mult_compute_units

directory. The directory structure looks like this:

mult_compute_units/
host.cpp
vadd.cpp
xcl2.cpp
xcl2.hpp

The host.cpp code has the OpenCL host code. The top level HLS function is in

vadd. cpp.

(a) Create an application project, compile and run the project.

(b) The system diagram in vitis analyzer looks like:

Profile

Calls: N/A
Utilization: N/A
Total: N/A
Average: N/A

P kernel.xclbi tem Ri
Q o0
vadd_1
AT
ZYNQ inl
in2
HPO
out_r
—isize
vadd

arch: | Q;

cu Total Avg
Utilization (%) Time (ms) Time (ms)
vadd 1 vadd 2,169 (3.07%) 2,773 (2.18 %) 1 (0.45 %) 0 (0.0 %) NA NA /A NiA

ame Kernel LUT (% Used) Register (% Used) BRAM (% Used) DSP (% Used) Calls

gz b A
] o

ESE5320 Fall 2022

which shows that there is one vadd kernel. The application timeline looks like:

P kernel.xclbin (System Run) x

summary % | Application Timeline x

[}
fe @ Q e 14 +
Name Value 200. 600000 ns 300. 000000 ms 400.000000 ms 500. 000000 ms 600. 000000 ns 700. 000000 ns 800 . 00BOBE ms 900 . 00ECCA ns. 1. 000. 008000 ms |1, 100. 000080
~ Host

~ Open CL AP Calls
General INACTIVE

Queuer 55A21AD7AD INACTIVE I I } =

* Data Transfer
~ Read
Row 0
Row 1
~ Write
Row 0

Row 1 “X0000000"
- Kernel Enqueues

Row 0

Row 1

Row 2

Row 3

vadd

wadd

CELE]
“ Device "edge-0*
* Binary Container kernal*

ESE5320

Fall 2022

From the application trace, we can see that although the host scheduled all ker-
nel executions concurrently, the second, third and fourth execution requests are
delayed as there is only one compute unit on the FPGA.

(¢) Increase the number of compute units to 4 and assign separate ports by going to

the window mentioned in the Bloom filter tutorial on P2. Compile and run the
updated configuration. The vitis analyzer system diagram would look like:

P kernel.xclbin (System Run) x

Summary X

a a o

Platform Diagram X System Diagram x

o |0
vadd_1 Profile
in1 Calls: N/A
[Utilization: N/A
T in2 Total: N/A
out_r Average: N/A
—size
HPO
vadd
vadd_2 Profile
L TTTTX - Calls: N/A
" (| iy Utilization: N/A
o L HP1 n Total: NJA
=zYna ——out_r Average: N/A
1T —size
vadd
vadd_3 Profile
._l I I I 4 inl Calls: N/A
LImnm E Utilization: N/A
HP2 fri2 Total: NJA
L out r Average: N/A
—|size
HP3 vadd_4 Profile
inl Calls: N/A
[Utilization: N/A
it Total: N/A
L— out r Average: N/A
—size
vadd

ESE5320 Fall 2022

The application timeline looks like:

% Platform Diagram x System Diagram x| Application Timeline

Name Value 200, 080000 1S 500, 080000 ms 400, 000000 ns 500, 000000 ms 600, 620000 1S [700. 600000 ns 500} 066660 s 500,09
L L L L L L L

Host
Open CLAPI Calls
General INACTIVE
Queue: 5574230740 INACTIVE
Data Transfer
Read
Row 0
Row 1
Write
Row 0
Row 1
Kernel Enqueues
Row 0
Row 1
Row 2

Row 3

Device "edge-0"

Binary Container "kernel

You can now see that the application takes advantage of the four compute units,
and that the kernel executions overlaps and executes in parallel.

(d) Look into the host code and learn how the multiple compute units are utilized:

for (int i = 0; i < num_cu; i++) {
int narg = O;

// Setting kernel arguments

OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in1[i]));
OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_in2[i]));
OCL_CHECK(err, err = krnls[i].setArg(narg++, buffer_output[i]));
OCL_CHECK(err, err = krnls[i].setArg(narg++, chunk_size));

// Copy input data to device global memory
OCL_CHECK(err, err = q.enqueueMigrateMemObjects({ buffer_in1[i],
buffer_in2[i] }, O /* O means from host*x/));

// Launch the kernel
OCL_CHECK(err, err = q.enqueueTask(krnls[i]));

You can see from the code that by creating an array of kernels and enqueueing
them in a loop, you can utilize the multiple compute units.

3. Streaming Kernel to Kernel Memory Mapped

The code you will use for this section is in the vitis_tutorials/streaming k2k_mm
directory. The directory structure looks like this:

ESE5320 Fall 2022

streaming_k2k_mm/
host.cpp
krnl_stream_vadd.cpp
krnl_stream_vadd_vmult.ini
krnl_stream_vmult.cpp
xcl2.cpp
xcl2.hpp

The host.cpp code has the OpenCL host code. There are two disjoint HLS kernels:
krnl_stream vadd.cpp and krnl_stream vmult.cpp. krnl_stream vadd vmult.ini
specifies how the two kernels are connected with each other. Read about the tutorial
from here and then continue.

(a) Create an application project. Add the two kernels as hardware functions, add
the V4+ linker option:
—--config ../src/krnl_stream_vadd_vmult.ini

vitis_workspace - streaming_k2k_mm/streaming_k2k_mm.pr] - Vitis IDE

inid S i -0 i/ DS [Ihg Quick Access || [Design |4 Debug

<. Explorer zﬂ B/%lia ¥ = O |[& streaming_kak_mm_system [%sneaming,kzk,mm zz} = 8 |z outline zz} =g
7 bloom_system K Application Project Settings Active build configuration: Hardware ~|® 7
[> streaming_k2k_mm_system [ese532_code master] [ese532 |
£} >streaming_k2k_mm [ese532_code master] [linuxonpsu_¢|| General Options
ﬁ\‘""“l”d“_ Project name: streaming k2k mm Target:]
% > Emulation-HW

% > Emulation-sw Platform: ese532 hwé pfm | -- Host debug: O
%> Hardware Runtime: OpenCL
G5 >src
£ host.cpp Report level: Default

£ .
% knl_stream_vadd.cpp Hardware optimization: Default optimization (-00)
(% krnl_stream_vmult.cpp

[xcl2.cpp Hardware Functions = o
[xcl2.hpp

& krnl_stream_vadd_vmult.ini
34 streaming_k2k_mm.prj

Compute Units Port Data Width Max Memory Ports

EIbinary_container_1

2 streaming_k2k_mm_system.sprj krnl_stream_vadd 1 Auto u}
krnl_stream_vmult 1 Auto O
Binary Container Settings o ®
ypefiltert... ® = binary_container_1 cEo o
o Assistant ;3‘ 8 G/RO% - =0 typefiltert... ® | B ¢ i ©
. . B ~ F*streaming_k2k_mm_sys
¥ streaming_k2k_mm_system [System)] Bt ing kzk Name: binary_container_1
. ~ @hstreamin mm = -
£} streaming_k2k_mm [Embedded OpencL] Y % Emul g* -
< Emulation-SW [software Emulation] N 2 FIFO =

i tion] » 4 Emulation-HW
—— — e v+ linker optionf ig ./src/krl_stream_vadd_vmult.ini
) 4 Hardware [Hardware] %
- w v+ Linker Command LI

§ (XILINK_VITIS}/bin/vi+
——target

© Console 2 |[£1 A

Build e [strea

R iearre L cibin 5 |(@emustion cansole 3| I v =8
binary_container_1.build/krnl_stream_vmult.xo

Revert Apply

cancel Apply and Close

https://xilinx.github.io/Vitis_Accel_Examples/master/html/streaming_k2k_mm.html

ESE5320

(b) Compile and run the project.

P binary_container_1.xclbin (System Run) X

The system diagram in

Summary X Application Tmeline x Platform Diagram X
a X o 0
" nn krnl_stream_vadd_1
L .
= ZYNQ -4! 1‘ inl
- - LIANRL] in2
n
Ll |
HPO
out
—size
- 7

<
Search: O

Name Kernel

B8 krnl_stream_vadd_L

krnl_stream_vadd
B8 krnl_stream_vmult 1 krnl_stream vmult = 2,176 (3.08 %)

LUT (% Used)

Register (% Used)

1,062 (1.51%) 1,507 (1.19 %)

2,544 (2.08 %)

krnl_stream_vadd

krnl_stream_vmult_1
inl
in2
out
—size

- 7
krnl_stream_vmult

cu Total Avg
BRAM (% Used) DSP (% Used) Calls (ijzation (%) Time (ms) Time (ms)
0 (0.0 %) 0 (0.0 %) NiA NiA NA NA
1(0.46 %) 3(0.83 %) A A A NFA

Fall 2022

vitis analyzer looks like:

Profile

Calls: N/A
Utilization: N/A
Total: N/A

Average: N/A

Profile

Calls: N/A
Utilization: N/A
Total: N/A
Average: N/A

which shows that the two kernels are reading from the DRAM and are also con-
nected via a stream connection. The application timeline looks like:

Q T s 4o
v P binary_container_Lxclbin (..}
- Summary
« System Diagram
« Platform Diagram
Run Guidance

Profile Summary

« Application Timeline

P binary_container_1.xclbin (System Run) x

Summary

Q @ a X =

Name
~ Host
~ Open CL API Calls
General
Queus: 55C77CATT0
~ Data Transfer
~ Read
Row 0
~ write
Row 0
Row 1
* Kernel Enqueues
Row 0
Row1

+ Device "edge-0"

x [Application Tmeline x| system

(A T

Value

cIFinish
INACTIVE

2
kn_stream vadd
knl_stream vmult

~ Binary Containe...y_container_1*

Diagram X Platform Diagram x

2, 509, 009000 ns |2, 909, 099000 ns

[2; 500, 009080 ns

|¢, 009, 000000 ns

L]

|¢;509, 000080 1

L Fini:

=h

"0x4010. .. 1"0

From the application trace, we can see that the two kernels are running concur-
rently.

4. Using Faster Clocks

(a) In Homework 6, we saw the our platform provides multiple clocks:

ESE5320 Fall 2022

Basic Platform Information

atform ese532_hwe_pfm
File: /media/1ilbirb/research/git/avnet/petalinux/projects/ese532_hwé_pfm/export/ese532_hwé_pfm/ese532_hwé_pfm.xpfm
Description:
ese532_hwe_pfm

n

avnet.com
ULTRA96V2
ULTRAS6V2

Hardware Emulation:

FPGA Family: zynquplus

FPGA Device: xczu3eg

Board Vendor: avnet.com

Board Name: avnet.com:ultragévz:1.1
Board Part: xczu3eg-sbva484-1-1
Maximum Number of Compute Units: 60

Index: @
Clock Index: 0
Frequency: 150.000000
Clock Index: 1
Frequency: 300.000000
Clock Index: 2
Frequency: 75.000000
Clock Index: 3
Frequency: 100.000000
Clock Index: 4
Frequency: 2080.000000
H 5
400.000000
6
600.000000

57915

126868
212

360

(b) We can assign faster clocks to our kernels in Tutorial 3. You can specify them
in a configuration file and pass it in the V4++ Linker Options. Looking at the
krnl _stream vadd vmult.ini, you can see that we have assigned Clock Index 1
(300 Mhz) to the kernels:

[connectivity]
stream_connect=krnl_stream_vadd_1.out:krnl_stream_vmult_1.in2:64

[clock]
id=1:krnl_stream_vadd_1
id=1:krnl_stream_vmult_1

where the format of the specification is id=<clock index>:<compute unit name>.
You should start with a slower clock in your project so that you can meet tim-
ing easily. After you have made HLS and host code optimizations, you can try

ESE5320 Fall 2022

increasing the clock frequency until your design fails to meet timing.

(¢) You can check if the clocks were correctly assigned by opening the vivado project
as instructed in Homework 6:

prj - /media/lilbirb/research/code /ese532_code/vitis_workspace/streaming_kzk_mm/Hardware/binary_container_1.build/link /vivado/vpl/prj/prj:xpr] - Vivado 2020.1

Ele Edt Flow Tools Reports Window Layout View Help write_bitstream Complete

=, -« B X & & p, B & 3 .3 == Default Layout v

Flow Navigator EREERE 51 0CK DESIGN - ULTRASV2 2 x

~ PROJECT MANAGER
£ settings

Add Sources

Diagram x Address Editor x 280
Q e H M © Q : + @ #, C & = DefaulView ~ 5

Language Templates ¥ Designer Assistance available. Run Block Automation

Sources

P Catalog

v IP INTEGRATOR
Create Block Design
Open Block Design di wiz 0

Generate Block Design

Design

~ SIMULATION

Run Simulation

~ RTL ANALYSIS

> Open Elaborated Design

Signals

]

~ SYNTHESIS proc_sys_reset 1

b Run Synthesis

> Open Synthesized Design

ymull|

~ IMPLEMENTATION

P Run Implementation

> Open mplemented Design

axiic_zyna_ulra_ps e 0 M AX|_HPM1_FPD T
»

I_ kenl_stream_ymult_1

~ PROGRAM AND DEBUG

¥i Generate Bitstream

Platform Interfaces | Board

> Open Hardware Manager

ago

System Ret Properties

[]
< 58

Tl Console | Messages | Log Reports Design Runs
Sustem Net. clle wiz 0 clle aira

You can see from the vivado block diagram that clock index 1 is assigned. More-
over, you can also see that an AXI Stream FIFO is connecting the two kernels.

10

