
ESE5320 Fall 2024

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE5320, Fall 2024 Final Friday, December 13

• Exam ends at 5:00pm; begin as instructed (target 3:00pm)
Do not open exam until instructed.

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration. All answers here.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1 2a 2b 3 4 5 6 7a 7b 7c 8a 8b 8c Total

10 5 5 10 10 10 20 10 2 8 3 4 3 100

1

ESE5320 Fall 2024

Consider the following code to render augmented reality features on a real-time video stream

code_one.c Sun Dec 08 12:38:47 2024 1

int WIDTH 2048

int HEIGHT 1024

int COLORS 3

int MASK 3

int VPARAMS 5

int VP_X 0

int VP_Y 1

int VP_XS 2

int VP_YS 3

int VP_ROT 4

int XOFF 2

int YOFF 2

int ROT 2

int XSCALE 2

int XSFACT 2

int YSCALE 2

int YSFACT 2

uint16_t reference[HEIGHT][WIDTH][COLORS];

uint16_t overlay[HEIGHT][WIDTH][COLORS+1]; // +1 for mask

int16_t sintable[360]; // -1 to 1 -- scaled by 2^14

int16_t costable[360];

void main() {

 while (true) { // loop Z

 augment_frame();

 }

}

void augment_frame() {

 uint16_t raw[HEIGHT][WIDTH][COLORS]; // uint16_t for 16b (2 byte) color per pixel

 uint16_t augment[HEIGHT][WIDTH][COLORS];

 uint16_t augmented[HEIGHT][WIDTH][COLORS];

 uint16_t old_viewpoint[VPARAMS];

 uint16_t viewpoint[VPARAMS];

 uint16_t *tmp_viewpoint;

 get_image(raw);

 tmp_viewpoint=old_viewpoint;

 old_viewpoint=viewpoint;

 viewpoint=tmp_viewpoint;

 compute_viewpoint(raw,reference,old_viewpoint,viewpoint);

 render_augmentation(viewpoint,overlay,augment);

 merge_frames(reference,viewpoint,raw,augment,augmented);

 send_image(augmented);

}

2

ESE5320 Fall 2024

code_two.c Sun Dec 08 11:55:19 2024 1

void compute_viewpoint(uint16_t ***image, uint16_t ***reference,

 int16_t *old, int16_t *current)

{

 uint64_t best_score=MAXINT; // maximum representable integer

 for (int rot=old[VP_ROT]-ROT;rot<old[VP_ROT]+ROT;rot+=1) { // loop A

 int16_t sr=sintable[rot]; // result is a fraction

 int16_t cr=costable[rot];

 for (int x=old[VP_X]-XOFF;x<old[VP_X]+XOFF;x++) // loop B

 for (int y=old[VP_Y]-YOFF;y<old[VP_Y]+YOFF;y++) // loop C

 for (int xs=old[VP_XS]/XSCALE;xs<old[VP_XS]*XSCALE;xs*=XSFACT) // loop D

 for (int ys=old[VP_YS]/YSCALE;ys<old[VP_YS]*YSCALE;ys*=YSFACT) // loop E

 {

 uint64_t score=0;

 for (int iy=0;iy<HEIGHT;iy++) // loop F

 for (int ix=0;ix<WIDTH;ix++) // loop G

 {

 uint16_t tx=((ix*cr+iy*sr)*xs)>>(14+8)+x; // 14 to scale sr, cr

 uint16_t ty=((ix*sr+iy*cr)*ys)>>(14+8)+y; // +8 for xscale, yscale

 if ((tx>=0) && (tx<WIDTH) && (ty>=0) && (ty<HEIGHT))

 for (int c=0;c<COLORS;c++) // loop H

 score+=abs(image[iy][ix][c]-reference[ty][tx][c]);

 }

 if (score<best_score)

 {

 best_score=score;

 current[VP_ROT]=rot;

 current[VP_X]=x;

 current[VP_Y]=y;

 current[VP_XS]=xs;

 current[VP_YS]=ys;

 }

 }

 }

}

void render_augmentation(int16_t *current, uint16_t ***overlay, uint16_t ***image)

{

 uint16_t rot=current[VP_ROT];

 uint16_t x=current[VP_X];

 uint16_t y=current[VP_Y];

 uint16_t xs=current[VP_XS];

 uint16_t ys=current[VP_YS];

 int16_t sr=sintable[rot]; // result is a fraction

 int16_t cr=costable[rot];

 for (int iy=0;iy<HEIGHT;iy++) // loop I

 for (int ix=0;ix<WIDTH;ix++) // loop J

 image[iy][ix]=UNMAPPED; // assume this runs like streaming data copy

 for (int iy=0;iy<HEIGHT;iy++) // loop K

 for (int ix=0;ix<WIDTH;ix++) // loop L

 {

 uint16_t tx=((ix*cr+iy*sr)*xs)>>(14+8)+x; // 14 to scale sr, cr

 uint16_t ty=((ix*sr+iy*cr)*ys)>>(14+8)+y; // +8 for xscale, yscale

 if ((tx>=0) && (tx<WIDTH) && (ty>=0) && (ty<HEIGHT)

 && (overlay[ty][tx][MASK]>0))

 for (int c=0;c<COLORS;c++) // loop M

 image[iy][ix][c]=overlay[ty][tx][c];

 }

}
3

ESE5320 Fall 2024

code_three.c Sun Dec 08 11:44:25 2024 1

void merge_frames(uint16_t ***reference, int16_t *current,

 uint16_t ***image, uint16_t ***augment, uint16_t ***augmented)

{

 uint16_t rot=current[VP_ROT];

 uint16_t x=current[VP_X];

 uint16_t y=current[VP_Y];

 uint16_t xs=current[VP_XS];

 uint16_t ys=current[VP_YS];

 int16_t sr=sintable[rot]; // result is a fraction

 int16_t cr=costable[rot];

 for (int iy=0;iy<HEIGHT;iy++) // loop N

 for (int ix=0;ix<WIDTH;ix++) // loop O

 {

 uint16_t tx=((ix*cr+iy*sr)*xs)>>(14+8)+x; // 14 to scale sr, cr

 uint16_t ty=((ix*sr+iy*cr)*ys)>>(14+8)+y;// +8 for xscale, yscale

 if ((tx>=0) && (tx<WIDTH) && (ty>=0) && (ty<HEIGHT)

 && (augment[iy][ix]!=UNMAPPED))

 {

 uint32_t diff=0;

 for (int c=0;c<COLORS;c++) // loop P

 diff+=abs(image[iy][ix][c]-reference[ty][tx][c]);

 if (diff<THRESH)

 for (int c=0;c<COLORS;c++) augmented[iy][ix][c]=augment[iy][ix][c];

 else

 for (int c=0;c<COLORS;c++) augmented[iy][ix][c]=image[iy][ix][c];

 }

 else

 for (int c=0;c<COLORS;c++) augmented[iy][ix][c]=image[iy][ix][c];

 }

}

void get_image(uint16_t ***image)

{

 for (int iy=0;iy<HEIGHT;iy++)

 for (int ix=0;ix<WIDTH;ix++)

 for (int c=0;c<COLORS;c++)

 image[iy][ix][c]=image_in[iy][ix][c];

}

void send_image(uint16_t ***image)

{

 for (int iy=0;iy<HEIGHT;iy++)

 for (int ix=0;ix<WIDTH;ix++)

 for (int c=0;c<COLORS;c++)

 image_out[iy][ix][c]=image[iy][ix][c];

}

4

ESE5320 Fall 2024

We start with a baseline, single processor system as shown.

64KB

P

local
scratchpad
memory

16GB/s 8GB
Main Memory

64MB
On−Chip
Memory

simple,
sequential
processor
core

Baseline SoC
V

id
e
o

 i
n

D
M

A
V

id
e

o
 o

u
t

D
M

A

image
input
memory

image
output
memory

• For simplicity (except problem 8), we will treat non-memory indexing adds (subtracts
count as adds), compares, abs, shifts, and multplies as the only compute operations.
We’ll assume the other operations take negligible time or can be run in parallel (ILP)
with the adds, abs, shift, multiplies, and memory operations. (Some consequences:
You may ignore loop and conditional overheads in processor runtime estimates; you
may ignore computations in array indices.)

• Baseline (simple, sequential) processor can execute one multiply, compare, shift, abs,
or add per cycle and runs at 1 GHz.

• Data can be transfered between pairs of memory (including main memory) at 16 GB/s
when streamed in chunks of at least 1024B. Assume for loops that only copy data can
be auto converted into streaming operations.

• Non-streamed access to the main memory takes 100 cycles and can move 8B.
• Non-streamed access to image and 64 MB on-chip memories takes 10 cycles and can

move 8B.
• Baseline processor has a local scratchpad memory that holds 64KB of data. Data can

be streamed into the local scratchpad memory at 16 GB/s. Non-streamed accesses to
the local scratchpad memory take 1 cycle.

• Baseline processor is 1 mm2 of silicon including its 64KB local scratchpad.
• By default, all arrays live in the 8 GB main memory.
• image in and image out live in the respective image input and image output memories.
• Arrays for sintable, costable and viewpoints (old viewpoint, viewpoint) live in

local scratchpad memory.
• Assume scalar (non-array) variables can live in registers.
• Assume all additions are associative.
• Assume comparisons, adds, and multiplies take 1 ns when implemented in hardware

accelerator, so fully pipelined accelerators also run at 1 GHz. A compare-mux operation
can also be implemented in 1 ns. Consider abs and shift free in hardware.

• Data can be transfered to accelerator local memory at the same 16 GB/s when streamed
in chunks of at least 1024B.

5

ESE5320 Fall 2024

1. Simple, Single Processor Resource Bounds

Give the single processor resource bound time (in cycles) for compute operations and
memory access for the computing components of augment frame.

function Compute Memory

get image all DMA 2048×1024×3×2
16

= 7.9× 105

compute viewpoint 43 × 22 × 2048× 1024× (12 + 3× 3) 43 × 22 × 2048× 1024× (2× 100)
= 1.13×10 = 1.1× 1011

overlay[ty][tx] including mask is single read
image[iy][ix] is single write

render augmentation 2048× 1024× 12 = 2.5× 107 2048×1024×3×2
16

+ 2048× 1024× 2× 100
= 4.2× 108

overlay[ty][tx] including mask is single read
image[iy][ix] is single write

merge image 2048× 1024× (12 + 3× 3) 2048× 1024× 4× 100
= 4.4× 107 = 8.4× 108

send image all DMA 2048×1024×3×2
16

= 7.9× 105

augment frame 1.1× 1010 1.1× 1011

6

ESE5320 Fall 2024

2. Based on the simple, single processor mapping from Problem 1:

(a) What loop is the bottleneck? (circle one)

get image

(compute viewpoint)
render augmentation

merge frames

send image
grade consistency with problem 1

(b) What is the Amdahl’s Law speedup if you only accelerate the identified function?

1.2×1011

1.5×109
≈ 81

grade consistency with problem 1

7

ESE5320 Fall 2024

3. Parallelism in Loops

(a) Classify the following loops as data parallel, reduce, or sequential?

(b) Explain why or why not?

Loop circle one Why?

A Data (Reduce) Sequential

Parallel
min-reduce on best score

F Data (Reduce) Sequential

Parallel
sum-reduce for score

K (Data Reduce Sequential

Parallel)
Computation for image[iy][ix] are each in-

dependent of other elements in array

N (Data Reduce Sequential

Parallel)
Computation for augmented[iy][ix] are

each independent of other elements in ar-

ray

Z Data Reduce (Sequential)

Parallel
must compute new viewpoint from one

iteration/image before starting computa-

tion on next image

8

ESE5320 Fall 2024

4. Data Streaming:

(a) Can the producer and consumer operate concurrently on the same input image?
or must the consumer work on a different (earlier) input image? (“Same Image?”
column)

(b) How big (minimum size) does the buffer (or other data storage space) need to
be between the identified loops in order to allow the loops to profitably execute
concurrently?

(Hint: Based on data dependencies, under what scenarios and granularity can the
identified loops act as a producer-consumer pair in a pipeline.)

Loop Pair (a) Same (b) Size

Image? (bytes)

get image → compute viewpoint N 12 MB

compute viewpoint→render augmentation N 10 B

render augmentation → merge frames Y 6 B

merge frames → send image Y 6 B
Explain size choices for partial credit consideration.

Must hold onto an entire image from get image to perform the
search in compute viewpoint.

Need to process entire search in compute viewpoint before
have a new viewpoint (5×2B = 10B) to pass to render augmentation.
render augmentation needs the viewpoint to process any im-
age pixels.

As render augmentation completes a pixel (3× 2B = 6B), it
is ready to use, in the same order, in merge frames.

As merge frames completes a pixel (3× 2B = 6B), it is ready
to be sent by send image in the same order produced.

9

ESE5320 Fall 2024

5. What is the critical path (latency bound) for compute viewpoint?

read sintable, costable 1

multiply by sine, cos 1

add sin/cos terms 1

scale 1

(shifts for free) 0

add offset 1

read image and reference 100

subtract 1

(abs for free) 0

sum reduce log2(2048× 1024× 3) = 23

min reduce log2(43 × 22) = 8

Total 137

full points for basic idea, including long memory, just a few serial,
and reduces ... should get small number < 300
-4 for getting reduces wrong.
-1 for overlooking memory read; -3 for putting memories in series.
-3 for missing other data parallel operations.

10

ESE5320 Fall 2024

(This page intentionally left mostly blank for answers.)

11

ESE5320 Fall 2024

6. Rewrite the body of compute viewpoint to minimize the memory resource bound
by exploiting the scratchpad memory and the 64MB on-chip memory and streaming
memory operations.

• Annotate what arrays live in the local scratchpad

• Account for total memory usage in the local scratchpad (use provided table)

• Describe how you modify the code

– You do not need to rewrite the entire function, but you can use code snippets
as necessary to clarify your answer.

– Use for loops that only copy data to denote the streaming operations

• Estimate the new memory resource bound for your optimized compute viewpoint.

Variable Size (Bytes)

image line[WIDTH][COLORS] 2048× 3× 2 = 12, 288

sintable[360] 720

costable[360] 720

old[5] 10

current[5] 10

Put a copy of reference in uint16 t ref copy[HEIGHT][WIDTH][COLORS]
(12MB) in 64MB on-chip memory

Copy reference image into 64MB on-chip memory at beginning
of function and operate on it from there.

Copy each line (2048 × 3 × 2B) into image line in the body of
F before starting G. All references to image[iy][ix] now go to
image line.
Common Problem: reference is accessed randomly. A line buffer will not work for it.

12

ESE5320 Fall 2024

(This page intentionally left mostly blank for answers.)

New memory resource bound:

2048×1024×3×2
16

+ 43 × 22 × 1024× 2048×3×2
16

+ 43 × 22 × 2048× 1024× (10 + 1)
= 6.1× 109

Roughly: 10 points for describing correct strategy that will get
reasonable speedup; 5 points for summarize memory usage; 5
points for resource bound.
Strategy should get at least 4× speedup and not exceed stated
memory capacities. Otherwise no greater than 10 points total.

Similarly, strategy based on incorrect assumption (like can use
line-buffer for reference) gets at most 10 points total.

13

ESE5320 Fall 2024

7. Considering a custom hardware accelerator implementation for compute viewpoint

where you are designing both the compute operators and the associated memory archi-
tecture. How would you use loop unrolling and array partitioning to achieve guaranteed
throughput of 30 frames per second of throughput.

Make the (probably unreasonable) assumption that reads from these memories can be
completed in one cycle.

Start by assuming we unroll H; we need to understand how much
unrolling of the rest of the loops is required. Since the loops
are associative reduce, the inner loop can be pipelined to II=1.
43×22×2048×1024

A×109
≤ 1

30, giving us A a little over 16. This suggests
unrolling about a factor of 32 beyond H will be sufficient.

Smaller unroll factors 17–32 are acceptable. There’s just a ques-
tion of how well data is distributed.
Common Problem: Not accounting for the operations that can be pipelined.

(a) Unrolling for each loop?

Loop Unroll Factor

A 1

B 1

C 1

D 1

E 1

F 1

G 32

H 3

(b) For the unrolling, how many multipliers and adders?

Multipliers 6× 32 = 192

Adders 32× (4 + 3× 2) = 320

Grade for consistency with answer to (a)

14

ESE5320 Fall 2024

(c) Array partitioning for each array?

Note: blank rows left for local arrays you may have added when optimizing mem-
ory in Question 6.

Array Array Partition Ports Width Depth/partition

old[] none 1 16 10

current[] none 1 16 10

sintable[] none 1 16 360

costable[] none 1 16 360

image[] n/a

reference[] n/a

image line[] cyclic 32 dim 1, x 1 48 64

complete dim 2 (and pack), c

ref tmp[] none 32 48 2,097,152

Common Problem: reference needs ports rather than partitioning since it is
accessed randomly.

2 points for old/current/sintable/costable
3 points for image/image line; 3 points for reference/ref temp
partial credit within each group.

15

ESE5320 Fall 2024

8. VLIW: Define the composition of a custom VLIW datapath for render augmentation

loop L achieving an II of 1.

Assume:

• Monlithic register file supporting all operators and memories.
• The memory is wide enough so the color/mask dimension in overlay[][] and im-

age[][] can be packed into a single memory operation.
• Here, since we’re handling the VLIW directly, we do need to consider looping and

indexing.

An equivalent statement of Loop L showing loop, conditional, indexing, and wide
memory operations is:

int ix=0;

uint16_t *iaddr_base=image; // no instruction cost

uint16_t *oaddr_base=overlay; // no instruction cost

#define MASK48 ((1<<48)-1);

while (ix<WIDTH) // loop L

{

uint16_t tx=((ix*cr+iy*sr)*xs)>>22+x;

uint16_t ty=((ix*sr+iy*cr)*ys)>>22+y;

uint16_t oaddr=oaddr_base+(ty*WIDTH+tx)*4;

uint16_t iaddr=iaddr_base+(ty*WIDTH+tx)*3;

uint64_t oval=*((uint64_t *)oaddr);

int tcnd=((tx>=0) && (tx<WIDTH) && (ty>=0) && (ty<HEIGHT)

&& ((oval>>48)>0));

oval=oval&MASK48;

*((uint48_t *)iaddr=(oval&tcnd)|(*((uint48_t *)iaddr)&~tcnd);

ix++;

}

(a) How many operators of each type so the Resource Bound II is 1.

Operator Inputs Outputs Number

incrementers/decrementers 1 1 1
ALU (includes |, &, &&, +, - , 2 1 34
×,˜ , >>, >, <, >=, <=, ==)

ports to memory containing overlay[] 2 1 1
ports to memory containing image[] 2 1 2

branch units 1 0 1 or 2

take anything 25–40 for ALU

16

ESE5320 Fall 2024

(b) What is the latency of the loop L body? Identify Critical Path and give length.

Critical Path 18

i. ix*cr, iy*sr, ix*sr, iy*cr, conditional branch

ii. + for terms above, ix++

iii. *xs, *ys, ix¡WIDTH

iv. >>

v. +x, +y

vi. tx, ty comparisons, ty*WIDTH

vii. && combine tx compares, && combine ty compares, +tx

viii. && combine tx and ty components, *4, *3

ix. add iaddr base, oaddr base

x. oaddr, iaddr dereference

xi. oval>>48, oval&MASK48

xii. compare for shifted ovall

xiii. && finish tcnd

xiv. ˜ tcnd, oval & tcnd

xv. & for ˜ tcnd

xvi. |
xvii. iaddr writeback

xviii. branch
Solution with single conditional branch at end back to top;
that’s one that only requires one branch unit. That solution
probably works better with II=1 software pipeline.
Mostly looking for them to see path is deep and understand
basic dependencies. Path of > 10 with plausible dependen-
cies ok for full credit.

(c) Can you schedule to achieve the resource bound II of 1? Why or why not?

Yes. Loops K, L are data parallel. There is no dependence
between loop iterations. There are no cycles in the flow
graph. Software pipeline the loop across multiple iterations
to get II of 1.

17

ESE5320 Fall 2024

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a student’s performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another person’s paper, article, or computer work and
submitting it for an assignment, cloning someone else’s ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a student’s
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on one’s resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another student’s efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for one’s own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that student’s responsibility to consult with the instructor to clarify any
ambiguities.

18

