ESE5320

Fall 2024

University of Pennsylvania
Department of Electrical and System Engineering
System-on-a-Chip Architecture

ESE5320, Fall 2024 Intermediate Throughput Milestone Wednesday, November 13

Due: Friday, November 22, 5:00PM

Group: Achieve target speed and functionality and writeup progress

1. Accelerate portions of your deduplication and compression task; running on real-time
network input. From last week, you should have network I/0O in place with a fully
functional design. The goal here is to achieve high throughput on some portion of
your pipeline (e.g. > 100 Mb/s on functional CDC, SHA, deduplication pipeline with
a simplified placeholder for LZW so that it does not limit throughput). This should
demonstrate you are able to add functionality to the provided I/O setup and maintain
high throughput.

Describe the portion of the pipeline you accelerated. What parts are fully func-
tional? What parts are simplified placeholders?

Report throughput achieved. Include details on the throughput supported by
each major operation as well as the overall throughput.

Report current compression rate achieved.
Describe all validation performed on your accelerated implementation.
Describe where each component runs and the resources it uses.

Identify where this design is in your design space. Explain additional design-space
axes beyond your previous milestone as necessary.

Describe your next steps to accelerate fully functional versions of the remaining
portions of the pipeline and further accelerate your components.

Support your description with a performance model.

Describe who did what.

2. Turn in a tar file for your code above to the designated assignment component in canvas
(one per group).

3. Turn in a tar or zip file with binaries to support execution of your code to the designated
assignment component in canvas (one per group).

(a)
(b)

encoder.xclbin, BOOT.bin, boot.scr, image.ub for FPGA kernel

encoder for OpenCL host code executable



ESE5320

()

Fall 2024

decoder executable configured to work with your encoded file and that can be
run on the Ultra96. (Most likely, this is just a compilation of the Decoder.cpp
we supplied; however, if you chose a different maximum block size, you may need
to change CODE_LENGTH; so give us back one with that change made.)

Make sure to compile it with the aarch64-1linux-gnu-g++ compiler and test it
on the Ultra96. While you could run the decoder on your host machine (which
could be Linux/Mac OS/Windows), we will run your decoder on the Ultra96.

client.sh shell script to invoke client with suitable —s parameter to demonstrate
your guaranteed data transfer performance.



