ESES5320:

System-on-a-Chip Architecture

Day 16: October 22, 2025

Deduplication and Compression Project

B #Penn,

Today

Motivation (part 1)

Project (part 2)

Content-Defined Chunking (part 3)
Hashing / Deduplication (part 4)

* LZW Compression Setup (part 5)

nn ESES5320 Fall 2025 -- DeHor

Message

» Can reduce data size by identifying and

reducing redundancy

* Can
— spend computation and data storage
—to reduce communication traffic

Problem

* Always want more

— Bandwidth

— Storage space
» Carry data with me (phone, laptop)
» Backup laptop, phone data

— Maybe over limited bandwidth links
* Never delete data
» Download movies, books, datasets
» Make most use of space, bw given

nn ESE5320 Fall 2025 -- DeHor

Opportunity

« Significant redundant content in our raw

data streams (data storage)

* More formally:
— Information content < raw data

* Reduce the data we need to send or

store by identifying redundancies

Example

* Two identical files
— Different parts of my file systems

» Don’t store separate copies
— Store one

— And the other says “same as the first file”

* e.g. keep a pointer

Why Identical?

 Eniac file system (common file server)

— Multiple students have copies of
assignment(s)

— Snapshots (.snapshot)

« Has copies of your directory an hour ago, days
ago, weeks ago

—...but most of that data hasn’'t changed

Broadening

* History file systems
—snapshot, Apple Time Machine

* Version Control (git, svn)

* Manually keep copies

« Download different software release
versions
— With many common files

Cloud Data Storage

» E.g. Drop Box, Google Drive, Apple Cloud

» Saves data for large class of people
— Want to only store one copy of each

» Synchronize with local copy on phone/laptop
— Only want to send one copy on update
— Only want to send changes

« Data not already known on other side
* (or, send that data compactly by just naming it)

Optimizing the Bottleneck

» Saving data (transmitted, stored)
» By spending compute cycles
— And storage database

* When communication (storage) is the
bottleneck

— We’re willing to spend computation to
better utilize the bottleneck resource

1

Penn ESE5320 Fall 2025 -- DeHor 8
8
Functional Placement
(where might we do this)
At file server or USB drive
— Deduplicate/compress data as stored
In client (laptop, phone)
— Dedup/compress to send to server
In data center network
— Dedup/compress data to send between server
Network infrastructure
— Dedup/compress from central to regional server
Per E Fall 2 H 10
10
Project
Part 2
Per E Fall 2 H 12

Project

» Perform deduplication/compression at
network speeds (400Mb/s)

¢ Use “chunks” instead of files

* Turn a raw/uncompressed data stream
into one that exploits
— Duplicate chunks
— Redundancies within chunks

Penn ESE5320 Fall 2025 -- DeHon 13

13

Project Task

Project Context

* File server input link from network
— Compress data before sending to disk

— (or USB link from computer, compress
before store to flash)

* Network link in data center or
infrastructure
— Compress data that goes over network

Penn ESE5320 Fall 2025 -- DeHor

14

14

Penn ESE5320 Fall 2025 -- DeHor 15

Preclass 1

* How many comparisons per input byte
in file?
— Hint: how many total comparisons?

#define MAX_FILE_SIZE 4096

#define MAX_KNOWN_FILES (1024%1024)

#define -1

int find_file(char file[MAX_FILE_SIZE],int flen, char **known_files) {

for(int i=0;i<MAX_KNOWN_FILES;i++) {

bool match=true;
for (int j=0;j<flen;j++) match=(match && (file[jl==known_files[il[j1));
if (match) return(i);

return(NO_MATCH) ;

Penn ESE5320 Fall 2025 -- DeHor 17

Motivation

» Can we afford to simply compare every
incoming file with all the files we've
already sent?

Penn ESE5320 Fall 2025 -- DeHor

16

16

Requirements?

» Can we afford to simply compare every
incoming file with all the files we've
already sent?

» Data coming in at 400 Mb/s

» Processor (or datapath) running at 1GHz

* How many comparisons needed per
cycle with preclass 1 solution?

— Hint: how many ns per input byte? Cycles?

Penn ESE5320 Fall 2025 -- DeHor

18

18

Alternate Strategy

* |s there something we can compute on
the input file that will let us
— Know if a file is definitely not equivalent
 So not worth checking every byte
— Find the duplicate directly?

Penn ESE5320 Fall 2025 -- DeHon

19

Alternatives

* How about
— Look at size of file?
— Look at 10 characters at fixed spots in the
files?
- E.g. bytes 11, 23, 113, 947, 1168, ...
» Could do better?

— Could do something where changing any
single character might be detected?

19

Exploring Alternatives

+ What if we xor’ed together every byte in
the file?

* What if we took sum of every word
(group of 4 bytes) in the file?

21

Hash

« A finite digest (fixed number of bits)
computed on a potentially large
collection of data (like a file)

« Ideally uniformly random digests
— each hash value equally likely

» Use as building block for grouping and
matching

Penn ESE5320 Fall 2025 -- DeHor

23

23

Penn ESE5320 Fall 2025 -- DeHor 20
20
Fingerprint, checksum, digest
» Compute a function on all the bytes in
the file > digest
+ Bins files into separate classes by the
digest
— Only need to check those
* As increase bits in digest
— Make likelihood of two files having same
digest smaller
« If can arrange for digests to essentially
o€ UNIque — like a fingerprint 22
22
Refined Strategy
» Keep a map of hash digests to files on
the system
* On new file,
— Compute hash digest on file
— Only compare file contents against files
with the same hash
* If hash is uniformly random with 20b,
how does this reduce the number of
remesess)G9 01€€ to compare? 24

24

Hashing Impact

» With (perfectly distributed) k-bit hash

TotalFiles

e AvgSearch = —

Penn ESE5320 Fall 2025 -- DeHon 25

25

Part 3:
Content-Defined Chunking

Penn ESE5320 Fall 2025 -- DeHon 26

Files or chunks?

* Why might files be the wrong granularity
for identifying duplicates?

Penn ESE5320 Fall 2025 -- DeHon 27

27

Preclass 2 Unique Blocks?

Block 0 [Tam Sam. T am Sam. Sam-I-Am. Block 4 [Tam Sam. T am Sam. Sam-I-Am.
That Sam-I-Am! That Sam-I-Am! That Sam-I-Am! That Sam-I-Am!
I do not like that Sam-I-Am! I do not like that Sam-I-Am!

Do you like green eggs and ham?

Block 1 | Do you like green eggs and ham? Block 5 | T do not like them, Sam-T-Am.

I do not like them, Sam-I-Am. I do not like green eggs and ham.

T do not like green eggs and ham.

Would you like them here or there?

Block 2 | Would you like them here or there? Block 6
I would not like them here or there.
I would not like them here or there. I would not like them anywhere.

I would not like them anywhere. I do not like green eggs and ham.
Block 3 | T do not like green eggs and ham. Block 7 | T do not like them, Sam-T-Am.

1 do not like them, Sam-I-Am.

Penn ESE5320 Fall 2025 -- DeHon 29

29

26

Blocks

* We regularly cut files into fixed-sized
blocks
— Disk sectors or blocks
—inodes in File systems
» We could look for duplicates in blocks
* Why might fixed-sized blocks not be
right division for deduplication?

Penn ESE5320 Fall 2025 - DeHor 28

28

Preclass 3 Unique Chunks?

Chuck 0 [Tam Sam. T am Sam. Sam-I-Am. Chunk 4 [T am Sam. T am Sam. Sam-I-Am.
That Sam-I-Am! That Sam-I-Am! That Sam-I-Am! That Sam-I-Am!

I do not like that Sam-I-Am! 1 do not like that Sam-I-Am!

Chunk 5 | Do you like green eggs and ham?
Chunk 1 | Do you like[green eggs and hani? 1 do not like them, Sam-I-Am.

I do not like them, Sam-I-Am. Chunk 6 | T do not like{ green eggs and hau).
Chunk 2 | T do not like|green eggs and hani.

Would you like them here or there?

‘Would you like them here or there?

T would not like them here or there.
I would not like them here or there. I would not like them anywhere.
I would not like them anywhere. Chunk 7 | T do not like green eggs and hami.

Chunk 3 | T do not like|green eggs and hani. I do not like them, Sam-I-Am.

T do not like them, Sam-I-Am.

Penn ESE5320 Fall 2025 - DeHor 30

30

Preclass 2 and 3

* Why are chunks able to capture more
duplicates?

31

Common File Modifications

* Add a line of text

* Remove a line of text

» Fix a typo

* Rewrite a paragraph

» Trim or compose a video sequence

+ - shift data - break alignment in block

Penn ESE5320 Fall 2025 -- DeHor 32

32

Content-Define Chunking

» Would like to re-align pieces around
unchanged/common sequences
— Around the content

» Break up larger thing (file) into pieces
based on features of content
— Hence"content-defined”

33

Chunks

» Pieces of some larger file (data stream)
Variable size

— Over a limited range

« Discretion in how formed / divided

Chunk Creation

* How do we identify chunks?

35

Penn ESE5320 Fall 2025 -- DeHor 34
34

Hashes and Chunk Creation

» Compute a hash on a window of values
— Window: sequence of W-bytes
— Like window filter

(1) [[x] [e]|] [a] [r] [e] [el|[n] [[e] [o] o] [s] [] [a]

0x20 0x67 0x72 0x65 0x65

0xC3

Penn ESE5320 Fall 2025 -- DeHor 36

36

enn ESE5320 Fall 2025 -- DeHor

Hashes and Chunk Creation

* Compute a hash on a window of values
— Window: sequence of W-bytes
— Like window filter

* Scan window over the input
(] [[k] [e]| [0 [g] [[e] [e]|[n] (] [e] [o] [o] [s] [] [a]

0x20 0x67 0x72 0x65 0x65

0xC3

(0 [[k [e] OJ|Le] [r] [e] [e] [n|[] [e] [o] [o] [s] [[]

0x20 0x67 0x72 0x65 0x65 0x63

0xC3 0x11 37

37

Hashes as Chunk Cut Points

« What does this do?

» Guarantees that each chunk begins (or
ends) at some fixed hash

» For a particular substring that matches
the target hash

— Always occurs at beginning (or end) of
chunk

« If have a large body of repeated text

— Will synchronize cuts at the same points
based on the content

enn ESE5320 Fall 2025 - DeHor 39

39

Chunking Design

» Raises questions
— How big should chunks be?

* Apply maximum and minimum size beyond
content definition?

— How big should hash window be?
* Discuss

— What forces drive larger chunks, smaller?
* How do large chunks help compression? Hurt?

nn ESES5320 Fall 2025 -- DeHor

Hashes and Chunk Creation

» Compute a hash on a window of values
— Window: sequence of W-bytes
— Like window filter

» Scan window over the input

* When hash has some special value
(like 0 or Ox11)

— Declare a chunk boundary

(0 [] [e] [|[e] [r] [e] [e] [n}|[] [e] [o] [o] [s] [[a]

0x20 0x67 0x72 0x65 0x65 0x63

0xC3 0x11 38

38

Penn

Chunk Size

Assume hash is uniformly random

The likelihood of each window having a
particular value is the same

So, if hash has a range of N,

the probability of a particular window
having the magic “cut” value is 1/N
...making the average chunk size N

So, we engineer chunk size by selecting
the range of the hash we use

esessmE:gs 12b,hash for 212 = 4KB chunks 40

40

Example Text

Consider beginning of repeated block of text.
This stuff has already been seen.

But, we are only matching on something that
has a hash of zero.

Maybe this line has a hash of zero.

But, our repeated text is before and after the
magic window with the matched hash value.

nn ESE5320 Fall 2025 - DeHor 42

Penn ESE5320 Fall 2025 --

Example Data Stream

Blue: Hash=0.

2

DeHon

Green: Identical
Maybe edited file,
added some content.

43

43

Example Data Stream

16 Blue: Hash=0.

18 1G] D | TENIF] gy |y Green: Identical

Maybe edited file,

Which chunks are

1B-2B?
1D--2F?
1E-2G?
1F-2H?
1G-217?

MH-2J7

2l

\
EM2F |2G 2H}2J
N

I

Penn ESE5320 Fall 2025 -- DeHon

added some content.

' exploitable duplicates?

45

45

Rolling Hash

A Windowed hash that can be computed
incrementally
Hash(a[x+0],a[x+1],...a[x+W-1])=
G(Hash(a[x-1],a[x+0],...a[x+W-2]))

- F(a[x-1])+F(A[x+W-1])

i.e., hash computation is associative

(+,- used abstractly here, could be in some
other domain than modulo arithmetic)

Penn ESE5320 Fall 2025 -- DeHon

47

47

Example Data Stream

1G
1B |1C| 1D | 1E[TF| |4 |4 Blue: Hash=0.
Green: Identical

Maybe edited file,
added some content.

N
N

A N
2C |20 2E\2F |2G |2HPN2J |2
N\ \

Penn ESE5320 Fall 2025 -- DeHon 44

44

Chunk Size

» Large chunks

— Increase potential compression
* ChunkSize/ChunkAddressBits
— Decrease
« Probability of finding whole chunk
« Fraction of repeated content included
completely inside chunks

Penn ESE5320 Fall 2025 - DeHor 46

46

Rolling Hash
DN EOLDEEHDE L L6 OE

0x20 0x67 0x72 0x65 0x65

0xC3

(0 [0 O] [e] [|Le] [c] [e] [e] [n][] [e] [o] [o] [s] [] [a]

0x20 0x67 0x72 0x65 0x65 0x63

0xC3 0x11

* hash (gree) = 0x20+0x67+0x72+0x65+0x65

» hash (green) = 0x67+0x72+0x65+0x65+0x6e
» hash(green) = hash(gree)-0x20+0x6e
Penn ESE5320 Fall 2025 - DeHor 48

48

Rabin Fingerprinting

* Particular scheme for rolling hash due
to Michael Rabin based on polynomial
over a finite field

» Commonly used for this chunking
application

Penn ESE5320 Fall 2025 -- DeHor

49

Content-Defined Chunking

« Compute rolling hash (Rabin
Fingerprint) on input stream

At points where hash value goes to 0,
create a new chunk

49

Penn ESE5320 Fall 2025 -- DeHor

50

Part 4:
Hashing Deduplication

»W NS ey <>

51

50

Hashes for Equality

» We can also (separately) take the hash
signature of an entire chunk

* The longer we make the hash,
the lower the likelihood two different
chunks will have the same hash

« If hash is perfectly uniform,

— N-bit hash, two chunks have a 2N chance
of having the same hash.

Penn ESE5320 Fall 2025 -- DeHor

52

Deduplicate
» Compute chunk hash
» Use chunk hash to lookup known
chunks
— Data already have on disk

— Data already sent to destination, so
destination will know

« If lookup yields a chunk with same hash
— Check if actually equal (maybe)
* If chunks equal
...~ Send (or save) pointer to existing chunk

53

52

Engineering Hash

» 2GB DRAM on Ultra96.
* How many 1KB chunks on a 1TB disk?

» Potential hash values for 256b hash?

53

Penn ESE5320 Fall 2025 -- DeHor

54

54

Engineering Hash

« 2GB DRAM on Ultra96.
« 1G = 230 1KB chunks on a 1TB disk.

» 256b hash has 2256 potential hashes
— Probably of same hash: 2-226

Penn ESE5320 Fall 2025 -- DeHor

55

Deduplicate
Compute chunk hash
Use chunk hash to lookup known
chunks
— Data already have on disk

— Data already sent to destination, so
destination will know

If lookup yields a chunk with same hash
— Check if actually equal (maybe)

How large of a memory do you need to
hold the table of all 256b hash results?

How.selate to Ultra96 DRAM capacity?

56

55

Deduplication Architecture

SHA-256 Hash

key:zssl hash value=address

Memory

Data Store
(Disk,
DRAM)
chunk

57

Secure Hash

* We regularly use digest signatures to
identify if a file has been tampered with

» Again, hashes are same, mean data
might be the same

» For security, we would like additional
property
— not easy to make the anti-tamper signature

match

59

Associative Memory

Maps from a key to a value

Key not necessarily dense
— Contrast simple RAM

Talk about options to implement next
week

320 Fall 2025 -- DeHor

58

58

Per

n ES

E53

Cryptographic Hash

One-way functions
Easy to compute the hash
Hard to invert

— Ideally, only way to get back to input data

is by brute force — try all possible inputs
Key: someone cannot change the
content (add a backdoor to code) and
then change some further to get hash
signature to match original

60

60

10

SHA-256

« Standard secure hash with a 256b hash
digest signature

* Heavily analyzed
» Heavily used
—TLS, SSL, PGP, Bitcoin, ...

Penn ESE5320 Fall 2025 -- DeHon

61

61

Preclass 4
* | AM S<2,3><5,4><0,4>

* Message?

(01123]4]5]6]7]8]9]10]11]12]13]14]15]16]
| A M S

nn ESE5320 Fall 2025 -- DeHon

63

63

n ESE5320 Fall 2025 -- DeHon

Idea

Use data already sent as the dictionary
— Give short names to things in dictionary
— Don’t need to pre-arrange dictionary

— Adapt to common phrases/idioms in a
particular document

65

65

Part 5:
LZW Compression

Penn ESE5320 Fall 2025 -- DeHon

62

62

Preclass 5, 6

* Bits in unencoded (decoded) message?
— Assume 8b char

Bits for encoded message?

— Assume 9b for character
« 1 bit to say is a character, then 8b char

— And 9b for <x,y> pair
« 1 bit char, 4b for each of xand y

Penn ESE5320 Fall 2025 -- DeHor

64

64

Encoding

» Greedy simplification
— Encode by successively selecting the
longest match between the head of the

remaining string to send and the current
window

Penn ESE5320 Fall 2025 -- DeHor

66

66

11

Algorithm Concept

* While data to send
— Find largest match in window of data sent

— If length too small (length=1)
» Send character
—Else
» Send <x,y> = <match-pos,length>
— Add data encoded into sent window

Preclass 7

* How many comparisons per invocation?

#define DICT_SIZE 4096
#define LENGTH 256
// clen<=LENGTH
int longest_match(char dict[DICT_SIZE], char candidate[LENGTH], int clen) {
int best_len=0;
int best_loc=-1;
for (int i=0;i<DICT_SIZE-clen;i++) {
j=0;
vhile((candidate[j]l==dict[i+j]) && (j<clen)) {
Jt
¥
if (j>best_len) {
best_len=j;
best_loc=i;

¥

return((best_loc<<8) |best_len);

Penn ESE5320 Fall 2025 -- DeHor

68

68

Pen 320 Fall 2025 -- DeHor 67
67
Next Time
» See a clever way to reduce
comparisons to constant work per input
character (linear in data being
compressed)
Penn ESES Fall Hor 69
69
Big Ideas
» Can reduce data size by identifying and
reducing redundancy
» Can spend computation and data
storage to reduce communication traffic
Penn ESES Fall Hor 71
71

Project Task

Penn ESE5320 Fall 2025 -- DeHor

70

70

Admin

* Feedback

* HW?7 due Friday

* Project assignment out

* Reading for Monday online

« First project milestone due next Friday

— Including teaming
* report teaming earlier ...
especially if team needs board

— Teamg pf 3

Penn ESE5320 Fall 2025 - D

72

72

12

