ESES5320:
System-on-a-Chip Architecture

Day 21: November 10, 2025
Verification 2

#Penn,

Today

 Assertions (Part 1)

Proving correctness (Part 2)
—FSM Equivalence

» Timing and Testing (Part 3)

Message

* If you don’t test it, it doesn’t work.
» Testing can only prove the presence of
bugs, not the absence.

— Full verification strategy is more than
testing.

 Valuable to decompose testing
— Functionality
— Functionality at performance

Assertions

Assertion

» Properties expect/demand to hold

* Predicate (Boolean expression) that must be
true

» Add to code
— Can uses variables in code to write expression

* Example: assert (num<100);

* Invariant
— Expect/demand this property to always hold

- ccsNeEver. vary, > never not be true 5

Equivalence with Reference
as Assertion

Match of test and golden reference is a
heavy-weight example of an assertion

r=fimpl(in);
assert (r==fgolden(in));

5

Assertion as Invariant

* May express a property that must hold
without expressing how to compute it.
— Different than just a simpler way to compute

int res[2];
res=divide(n,d);
assert (res[QUOTIENT | *d+res [REMAINDER]==n) ;

320 Fall 2025 -- DeHor

Lightweight

» Typically, lighter weight (less
computation) than full equivalence
check

» Typically, less complete than full check

 Allows continuum expression

Penn ESE5320 Fall 2025 -- DeHor 8

Preclass 1

What property needs to hold on 1?
Note: divide: s/1
s=packetsum(p);
l=packetlen(p);
res=divide(s,1l);

Preclass 2

What must be true of my array[loc]
after call?

int findloc(int target, int *a, int limit);

int loc;

loc=findloc(my_target,my_array,MY_ARRAY_LEN) ;
// property on my_array[loc] should hold here?

1

8

Check a Requirement

s=packetsum(p);
l=packetlen(p);
assert(1!=0);
res=divide(s,1l);

Penn ESE5320 Fall 2025 -- DeHor 10

10

Merge using Streams ~ °"

* Merging two sorted list is a streaming
operation
* int aptr; int bptr;
+ astream.read(ain); bstream.read(bin)
* For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}
vonn ccEIS€, 1/, COpY, OVEr remaining from astream/bstreamqo

12

Merge Requirement
Require: astream, bstream sorted

int aptr; int bptr;

astream.read(ain); bstream.read(bin)

For (i=0;i<MCNT;i++)

If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++; astream.read(ain);}
Else
{ ostream.write(bin) bptr++; bstream.read(bin);}

Else // copy over remaining from astream/bstream

5320 Fall 2025 -- DeHon

13

13

nn ESE5320 Fall 2025 -- DeHor

Merge Requirement
Require: astream, bstream sorted
Int ptr; int bptr;
astream.read(ain); bstream.read(bin)
For (i=0;i<MCNT;i++)
If ((aptr<ACNT) && (bptr<BCNT))
If (ain>bin)
{ ostream.write(ain); aptr++;
int prev_ain=ain; astream.read(ain);
assert(prev_ain>=ain);

14

14

Merge with Order Assertion

* When composed

— Every downstream merger checks work of
predecessor

15

Penn

ESE532

What do with Assertions?

* Include logic during testing (verification)

* Omit once tested
— Compiler/library/macros (#define) omit code
— Keep in source code

« Maybe even synthesize to gate logic for
FPGA testing

* When assertion fail

— Count

— Break program for debugging (dump core)

Fall 2025 -- DeHor

17

17

Merge Requirement
Require: astream, bstream sorted
Requirement that input be sorted is good
— And not hard to check

Not comprehensive

— Weaker than saying output is a sorted version of
input

What errors would it allow?

enn ESE5320 Fall 2025 -- DeHor

16

16

Penn

Assertion Roles
+ Specification (maybe partial)
— May address state that doesn't exist in gold
reference

* Documentation

—This is what | expect to be true
* Needs to remain true as modify in the future

» Defensive programming
— Catch violation of input requirements
+ Catch unexpected events, inputs
+ Early failure detection
seNfglidate that something isn’t happening

18

18

Assertion Discipline

* Worthwhile discipline

— Consider and document input/usage
requirements

— Consider and document properties that
must always hold

* Good to write those down
— As precisely as possible
* Good to check assumptions hold

20 Fall 2025 -- DeHor

19

19

Prove Equivalence

» Testing is a subset of Verification

» Testing can only prove the presence of
bugs, not the absence.

» Depends on picking an adequate set of
tests

» Can we guarantee that all behaviors are
the correct? Same as reference?
Seen all possible behaviors?

5320 Fall 2025 -- DeHor

Equivalence Proof

FSM
Part 2

Penn ESE5320 Fall 2025 -- DeHor

20

21

21

Day 20

Testing with Reference
Specification
Validate the design by testing it:
» Create a set of test inputs
* Apply test inputs

— To implementation under test
— To reference specification

 Collect response outputs
» Check if outputs match

23

20

Idea

* Reason about all behaviors
— Response to all possible inputs

» Try to find if there is any way to reach
disagreement with specification

» Or can prove that they always agree

« Still demands specification
—...but we can also relax that with assertions

Fall 2025 -- DeHor

Penn ESE532!

22

22

Formal Equivalence with
Reference Specification

Validate the design by proving
equivalence between:
» implementation under consideration

« reference specification

24

Testing FSM Equivalence

¢ Exhaustive:

— Generate all strings of length |state|
« (for larger FSM = the one with the most states)

— Feed to both FSMs with these strings
— Observe any differences?

* How many such strings?
— (N binary input bits to FSM, S states)

— 2N'S
Penn ESE5320 Fall 2025 -- DeHon 25
25
Compare
« Start with golden model setup || *** eoe
— Run both and compare output | |
* Create Composite ESM e 10, 1, .cccce N
— Start with both FSMs FSM1| |FSM2
— Connect common inputs 00,11110:00 00,100

together (Feed both FSMs)

— XOR together outputs of two
FSMs

« Xor's will be 1 if they disagree,
0 otherwise

Creating Composite

FSM
» Assume know start state for each FSM W
» Each state in composite is labeled by

the pair {S1;, S2}}

— How many such states?
« Startin {S1o, S20}
» For each input a, create a new edge:

— T(a,{S1o, S20})~> {S1;, S2}

* 1f T4(a, S10)> S1; and Ty(a, S20)> S2;

» Repeat for each composite state reached

Penn ESE5320 Fall 2025 -- DeHor 29
29

Peni

FSM Equivalence

« |llustrate with concrete model of FSM
equivalence

—|s some implementation FSM
— Equivalent to reference FSM

n ESE5320 Fall 2025 -- DeHor

26

26

Compare

» Create composite FSM
— Start with both FSMs
— Connect common inputs together (Feed both FSMs)
— XOR together outputs of two FSMs
« Xor's will be 1 if they disagree, 0 otherwise
+ Ask if the new machine ever generate a 1 on an
xor output (signal disagreement)
— Any 1 is a proof of non-equivalence
— Never produce a 1 - equivalent

Penn ESE5320 Fall 2025 -- DeHor

28

28

Penn

Composite FSM

* How much work?
* Hint:
— Maximum number of composite states
(state pairs)

— Maximum number of edges from each
state pair?

— Work per edge?

ESE5320 Fall 2025 -- DeHor

30

30

Composite FSM

* Work
At most |2V|*|State1]*|State2| edges ==
work
« Can group together original edges
—i.e. in each state compute intersections of
outgoing edges
— Really at most |E+|*|E2|
* |E| =# edges in FSM

Penn ESE5320 Fall 2025 -- DeHon

31

31

Non-Equivalence

« State {S1;, S2;} demonstrates non-
equivalence iff
—{S1i, S2;} reachable
— On some input, State S1;and S2; produce

different outputs

* If S1;and S2;have the same outputs for
all composite states, it is impossible to
distinguish the machines
— They are equivalent

» A reachable state with differing outputs

ooz lmplies the machines are not identical

32

Answering Reachability

« Start at composite start state {S1, S2¢}
» Search for path to a differing state
* Use any search

— Breadth-First Search, Depth-First Search
» End when find differing state

— Not equivalent

* OR when have explored entire
reachable graph without finding
—Are equivalent

Penn ESE5320 Fall 2025 -- DeH;

33

32

33

Reachability Search

» Worst: explore all edges at most once
— O(IEN=O(IE1[*|E2])

» Can combine composition construction
and search
— i.e. only follow edges which fill-in as search
— (way described)

nn ESE5320 Fall 2025 -- DeHor

34

Preclass 3

1/0

- Means don’t-care. Can read as (0 or 1) here.

Penn ESE5320 Fall 2025 -- DeHor

35

34

35

Penn

ESE

Creating Composite FSM

» Assume know start state for each FSM
« Each state in composite is labeled by the pair
{S1;, S2}}
« Startin {S1o, S20}
» For each symbol a, create a new edge:
— T(a,{S10, S20})> {S1;, S2}}
« If Ty(a, S10)> S1; and Ta(a, S20)> S2;

« Check that both state machines produce same outputs
on input symbol a

» Repeat for each composite state reached

5320 Fall 2025 -- DeHor

36

36

Preclass 4

i State NextState o

0 S0 S1 0

1 so S2 0

0 St S3 1

181 S4 0

0 82 sS4 0

182 sS4 1

- 83 S5 0

- 84 S5 0

- 86 S0 0
Penn ESE5320 Fall 2025 -- DeHor 37
37

Assertion Failure Reachability

* Can use with assertions

* |s assertion failure reachable?

— Can identify a path (a sequence of inputs)
that leads to an assertion failure?
P n ES Fall H 39
39
Timing
Part 3

Penn ES Fall H 41
41

Per

FSM - Model Checking

* FSM case simple — only deal with states
* More general, need to deal with
— operators (add, multiply, divide)

— Wide word registers in datapath
 Cause state exponential in register bits

» Tricks
— Treat operators symbolically
» Separate operator verification from control verif.
— Abstract out operator width

« Similar flavor of case-based search

,esesGONditionals need to be evaluated symbolicallyg

38

Formal Equivalence Checking

Rich set of work on formal models for
equivalence

— Challenges and innovations to making
search tractable

— Used with processor validation
« Common versions

— Model Checking (2007 Turing Award)
— Bounded Model Checking

40

Issues

» Cycle-by-cycle specification can be
overspecified

» Golden Reference Specification not run
at target speed

42

Tokens

» Use data presence to indicate when
producing a value
* Only compare corresponding outputs

— Only store present outputs from
computations, since that'’s all comparing

* Relevant non-Real-Time
* Examples?
— (not want to match cycle-by-cycle)

20 Fall 2025 -- DeHor

43

43

Challenge

» Cannot record at full implementation rate

— Inadequate bandwidth to
« Store off to disk
* Get out of chip

« Cannot record all the data you might want
to compare at full rate

45

Bursts to Memory

* Run in bursts

* Repeat
— Enable computation
— Run at full rate storing to memory buffer
— Stall computation

— Offload memory buffer at (lower) available
bandwidth

— (possibly check against golden model)

Penn ESE5320 Fall 2025 -- DeHor

47

47

Timing
» Record timestamp from implementation
« Allow reference specification to specify
its time stamps
— “Model this as taking one cycle”

— Or requirements on its timestamps
* This must occur before cycle 63
* This must occur between cycle 60 and 65

» Compare values and times
* More relevant Real Time
« Example Real Time where exact cycle

penn esessdQLIRAIEr?

44

44

Penn ESE532!

At Speed Testing

« Compiled assertions might help

— Perform the check at full rate so don’t need
to record

» Capture bursts to on-chip memory
— Higher bandwidth

— ...but limited capacity, so cannot operate
continuously

Fall 2025 -- DeHor

46

46

Penn

Generalize

Low speed, sequential load
— — Input-Sequence- —— —
in Memory

High
Speed
Clock

Generalize to
input and output

Feed from memories
Compute full rate
Write into memory

Operator
Under
Test

— —+ — —Capture Outputs- —

in Memory

Low speed, sequential offlpad

AXI Bus

Can run at high rate for number of
cycles can store inputs and outputs

ESE5320 Fall 2025 -- DeHor

48

48

Generalize

Low speed, sequential load

~
in Memory
L4

Operator
Under

¢ Generalize to
input and output g
Speed

¢ Feed from memories Clock
* Compute full rate

Test

s —

* Write into memory

re Output:
in Memory

Low speed, sequential offlpad

AXI Bus

What might this fail to test?

20 Fall 2025 -- DeHor 49

Burst Testing

* Issue
— May only see high speed for
computation/interactions that occur within a
burst period
— May miss interaction at burst boundaries
» Mitigation
— Rerun with multiple burst boundary offsets
— So all interactions occur within some burst
—Decorrelate interaction and burst boundary

Penn ESE532

50

49

Timing Validation

Doesn’t need to be all testing either
Static Timing Analysis to determine
viable clock frequency

— As Vivado is providing for you

Cycle estimates as get from Vivado
— 11, to evaluate a function

Worst-Case Execution Time for
software

5320 Fall 2025 - DeHor 51

51

Learn More

CIS6730 — Computer Aided Verification
CIS5410 — includes verification for real-
time system properties

CIS5000 - Software Foundations

— Has mechanized proofs, proof checkers

50

Decompose Verification

Breaks into two pieces:
1. Does it function correctly?
2. What speed does it operate it?

— Does it continue to work correctly at that
speed?

52

Big Ideas

* Assertions valuable
— Reason about requirements and invariants
— Explicitly validate

» Formally validate equivalence when
possible

* Valuable to decompose testing
— Functionality
— Functionality at performance

+ ...we can extend techniques to address
timing and support at-speed tests

Penn ESE5320 Fall 2025 -- DeH

54

54

Admin

Feedback

No class on Wednesday

— Work on project

Reading for Monday on Canvas
P3 due Friday

P4 out

20 Fall 2025 -- DeHor

55

55

10

