
1

Penn ESE5320 Fall 2025 -- DeHon 1

ESE5320:
System-on-a-Chip Architecture

Day 21: November 10, 2025
Verification 2

1

Penn ESE5320 Fall 2025 -- DeHon 2

Today
• Assertions (Part 1)
• Proving correctness (Part 2)

– FSM Equivalence
• Timing and Testing (Part 3)

2

Message

• If you don’t test it, it doesn’t work.
• Testing can only prove the presence of

bugs, not the absence.
– Full verification strategy is more than

testing.
• Valuable to decompose testing

– Functionality
– Functionality at performance

Penn ESE5320 Fall 2025 -- DeHon 3

3

Assertions

Penn ESE5320 Fall 2025 -- DeHon 4

4

Assertion

• Properties expect/demand to hold
• Predicate (Boolean expression) that must be

true
• Add to code

– Can uses variables in code to write expression
• Example: assert(num<100);
• Invariant

– Expect/demand this property to always hold
– Never vary ! never not be truePenn ESE5320 Fall 2025 -- DeHon 5

5

Equivalence with Reference
as Assertion

• Match of test and golden reference is a
heavy-weight example of an assertion

• r=fimpl(in);
• assert (r==fgolden(in));

Penn ESE5320 Fall 2025 -- DeHon 6

6

2

Assertion as Invariant

• May express a property that must hold
without expressing how to compute it.
– Different than just a simpler way to compute

int res[2];
res=divide(n,d);
assert(res[QUOTIENT]*d+res[REMAINDER]==n);

Penn ESE5320 Fall 2025 -- DeHon 7

7

Lightweight

• Typically, lighter weight (less
computation) than full equivalence
check

• Typically, less complete than full check

• Allows continuum expression

Penn ESE5320 Fall 2025 -- DeHon 8

8

Preclass 1

What property needs to hold on l?
 Note: divide: s/l

s=packetsum(p);
l=packetlen(p);

res=divide(s,l);

Penn ESE5320 Fall 2025 -- DeHon 9

9

Check a Requirement

s=packetsum(p);

l=packetlen(p);

assert(l!=0);
res=divide(s,l);

Penn ESE5320 Fall 2025 -- DeHon 10

10

Preclass 2

What must be true of my_array[loc]
after call?

Penn ESE5320 Fall 2025 -- DeHon 11

11

Merge using Streams
• Merging two sorted list is a streaming

operation
• int aptr; int bptr;
• astream.read(ain); bstream.read(bin)
• For (i=0;i<MCNT;i++)

If ((aptr<ACNT) && (bptr<BCNT))
 If (ain>bin)
 { ostream.write(ain); aptr++; astream.read(ain);}
 Else
 { ostream.write(bin) bptr++; bstream.read(bin);}
Else // copy over remaining from astream/bstreamPenn ESE5320 Fall 2025 -- DeHon 12

Day 13

12

3

Merge Requirement
• Require: astream, bstream sorted
• int aptr; int bptr;
• astream.read(ain); bstream.read(bin)
• For (i=0;i<MCNT;i++)

If ((aptr<ACNT) && (bptr<BCNT))
 If (ain>bin)
 { ostream.write(ain); aptr++; astream.read(ain);}
 Else
 { ostream.write(bin) bptr++; bstream.read(bin);}
Else // copy over remaining from astream/bstream

Penn ESE5320 Fall 2025 -- DeHon 13

13

Merge Requirement
• Require: astream, bstream sorted
• Int ptr; int bptr;
• astream.read(ain); bstream.read(bin)
• For (i=0;i<MCNT;i++)

If ((aptr<ACNT) && (bptr<BCNT))
 If (ain>bin)
 { ostream.write(ain); aptr++;
 int prev_ain=ain; astream.read(ain);
 assert(prev_ain>=ain);
}
 Penn ESE5320 Fall 2025 -- DeHon 14

14

Merge with Order Assertion
• When composed

– Every downstream merger checks work of
predecessor

Penn ESE5320 Fall 2025 -- DeHon 15

merge
+alt

merge
+alt

merge
+alt

15

Merge Requirement
• Require: astream, bstream sorted
• Requirement that input be sorted is good

– And not hard to check
• Not comprehensive

– Weaker than saying output is a sorted version of
input

• What errors would it allow?

Penn ESE5320 Fall 2025 -- DeHon 16

16

What do with Assertions?
• Include logic during testing (verification)
• Omit once tested

– Compiler/library/macros (#define) omit code
– Keep in source code

• Maybe even synthesize to gate logic for
FPGA testing

• When assertion fail
– Count
– Break program for debugging (dump core)

Penn ESE5320 Fall 2025 -- DeHon 17

17

Assertion Roles
• Specification (maybe partial)

– May address state that doesn’t exist in gold
reference

• Documentation
– This is what I expect to be true

• Needs to remain true as modify in the future

• Defensive programming
– Catch violation of input requirements

• Catch unexpected events, inputs
• Early failure detection
• Validate that something isn’t happeningPenn ESE5320 Fall 2025 -- DeHon 18

18

4

Assertion Discipline

• Worthwhile discipline
– Consider and document input/usage

requirements
– Consider and document properties that

must always hold
• Good to write those down

– As precisely as possible
• Good to check assumptions hold

Penn ESE5320 Fall 2025 -- DeHon 19

19

Equivalence Proof

FSM
Part 2

Penn ESE5320 Fall 2025 -- DeHon 20

20

Prove Equivalence

• Testing is a subset of Verification
• Testing can only prove the presence of

bugs, not the absence.
• Depends on picking an adequate set of

tests
• Can we guarantee that all behaviors are

the correct? Same as reference?
Seen all possible behaviors?

Penn ESE5320 Fall 2025 -- DeHon 21

21

Idea

• Reason about all behaviors
– Response to all possible inputs

• Try to find if there is any way to reach
disagreement with specification

• Or can prove that they always agree

• Still demands specification
– …but we can also relax that with assertions

Penn ESE5320 Fall 2025 -- DeHon 22

22

Testing with Reference
Specification

Validate the design by testing it:
• Create a set of test inputs
• Apply test inputs

– To implementation under test
– To reference specification

• Collect response outputs
• Check if outputs match

Penn ESE5320 Fall 2025 -- DeHon 23

Day 20

23

Formal Equivalence with
Reference Specification

Validate the design by proving
equivalence between:
• implementation under consideration
• reference specification

Penn ESE5320 Fall 2025 -- DeHon 24

24

5

Penn ESE5320 Fall 2025 -- DeHon 25

Testing FSM Equivalence

• Exhaustive:
– Generate all strings of length |state|

• (for larger FSM = the one with the most states)
– Feed to both FSMs with these strings
– Observe any differences?

• How many such strings?
– (N binary input bits to FSM, S states)
– 2N*S

25

FSM Equivalence

• Illustrate with concrete model of FSM
equivalence
– Is some implementation FSM
– Equivalent to reference FSM

Penn ESE5320 Fall 2025 -- DeHon 26

26

Penn ESE5320 Fall 2025 -- DeHon 27

Compare

• Start with golden model setup
– Run both and compare output

• Create composite FSM
– Start with both FSMs
– Connect common inputs

together (Feed both FSMs)
– XOR together outputs of two

FSMs
• Xor’s will be 1 if they disagree,

 0 otherwise

27

Penn ESE5320 Fall 2025 -- DeHon 28

Compare

• Create composite FSM
– Start with both FSMs
– Connect common inputs together (Feed both FSMs)
– XOR together outputs of two FSMs

• Xor’s will be 1 if they disagree, 0 otherwise

• Ask if the new machine ever generate a 1 on an
xor output (signal disagreement)
– Any 1 is a proof of non-equivalence
– Never produce a 1 ! equivalent

28

Penn ESE5320 Fall 2025 -- DeHon 29

Creating Composite
FSM
• Assume know start state for each FSM
• Each state in composite is labeled by

the pair {S1i, S2j}
– How many such states?

• Start in {S10, S20}
• For each input a, create a new edge:

– T(a,{S10, S20})! {S1i, S2j}
• If T1(a, S10)! S1i, and T2(a, S20)! S2j

• Repeat for each composite state reached

29

Penn ESE5320 Fall 2025 -- DeHon 30

Composite FSM

• How much work?
• Hint:

– Maximum number of composite states
 (state pairs)
– Maximum number of edges from each

state pair?
– Work per edge?

30

6

Penn ESE5320 Fall 2025 -- DeHon 31

Composite FSM

• Work
 At most |2N|*|State1|*|State2| edges ==

work
• Can group together original edges

– i.e. in each state compute intersections of
outgoing edges

– Really at most |E1|*|E2|
• |E| = # edges in FSM

31

Penn ESE5320 Fall 2025 -- DeHon 32

Non-Equivalence
• State {S1i, S2j} demonstrates non-

equivalence iff
– {S1i, S2j} reachable
– On some input, State S1i and S2j produce

different outputs
• If S1i and S2j have the same outputs for

all composite states, it is impossible to
distinguish the machines
– They are equivalent

• A reachable state with differing outputs
– Implies the machines are not identical

32

Penn ESE5320 Fall 2025 -- DeHon 33

Answering Reachability

• Start at composite start state {S10, S20}
• Search for path to a differing state
• Use any search

– Breadth-First Search, Depth-First Search
• End when find differing state

– Not equivalent
• OR when have explored entire

reachable graph without finding
– Are equivalent

33

Penn ESE5320 Fall 2025 -- DeHon 34

Reachability Search

• Worst: explore all edges at most once
– O(|E|)=O(|E1|*|E2|)

• Can combine composition construction
and search
– i.e. only follow edges which fill-in as search
– (way described)

34

Preclass 3

Penn ESE5320 Fall 2025 -- DeHon 35

s0

s1

s2

-/0

-/1

-/1

q0

q1

q3

q2-/1
-/1

-/0

1/0
0/0

- Means don’t-care. Can read as (0 or 1) here.

35

Penn ESE5320 Fall 2025 -- DeHon 36

Creating Composite FSM
• Assume know start state for each FSM
• Each state in composite is labeled by the pair

{S1i, S2j}
• Start in {S10, S20}
• For each symbol a, create a new edge:

– T(a,{S10, S20})! {S1i, S2j}
• If T1(a, S10)! S1i, and T2(a, S20)! S2j

• Check that both state machines produce same outputs
on input symbol a

• Repeat for each composite state reached

36

7

Preclass 4

Penn ESE5320 Fall 2025 -- DeHon 37

37

FSM ! Model Checking
• FSM case simple – only deal with states
• More general, need to deal with

– operators (add, multiply, divide)
– Wide word registers in datapath

• Cause state exponential in register bits

• Tricks
– Treat operators symbolically

• Separate operator verification from control verif.
– Abstract out operator width

• Similar flavor of case-based search
– Conditionals need to be evaluated symbolicallyPenn ESE5320 Fall 2025 -- DeHon 38

38

Assertion Failure Reachability

• Can use with assertions
• Is assertion failure reachable?

– Can identify a path (a sequence of inputs)
that leads to an assertion failure?

Penn ESE5320 Fall 2025 -- DeHon 39

39

Formal Equivalence Checking

• Rich set of work on formal models for
equivalence
– Challenges and innovations to making

search tractable
– Used with processor validation

• Common versions
– Model Checking (2007 Turing Award)
– Bounded Model Checking

Penn ESE5320 Fall 2025 -- DeHon 40

40

Timing

Part 3

Penn ESE5320 Fall 2025 -- DeHon 41

41

Issues

• Cycle-by-cycle specification can be
overspecified

• Golden Reference Specification not run
at target speed

Penn ESE5320 Fall 2025 -- DeHon 42

42

8

Tokens

• Use data presence to indicate when
producing a value

• Only compare corresponding outputs
– Only store present outputs from

computations, since that’s all comparing
• Relevant non-Real-Time
• Examples?

– (not want to match cycle-by-cycle)
Penn ESE5320 Fall 2025 -- DeHon 43

43

Timing
• Record timestamp from implementation
• Allow reference specification to specify

its time stamps
– “Model this as taking one cycle”
– Or requirements on its timestamps

• This must occur before cycle 63
• This must occur between cycle 60 and 65

• Compare values and times
• More relevant Real Time
• Example Real Time where exact cycle

not matter? Penn ESE5320 Fall 2025 -- DeHon 44

44

Challenge

• Cannot record at full implementation rate
– Inadequate bandwidth to

• Store off to disk
• Get out of chip

• Cannot record all the data you might want
to compare at full rate

Penn ESE5320 Fall 2025 -- DeHon 45

45

At Speed Testing

• Compiled assertions might help
– Perform the check at full rate so don’t need

to record

• Capture bursts to on-chip memory
– Higher bandwidth
– …but limited capacity, so cannot operate

continuously
Penn ESE5320 Fall 2025 -- DeHon 46

46

Bursts to Memory

• Run in bursts
• Repeat

– Enable computation
– Run at full rate storing to memory buffer
– Stall computation
– Offload memory buffer at (lower) available

bandwidth
– (possibly check against golden model)

Penn ESE5320 Fall 2025 -- DeHon 47

47

Generalize

• Generalize to
input and output

• Feed from memories
• Compute full rate
• Write into memory

• Can run at high rate for number of
cycles can store inputs and outputs

Penn ESE5320 Fall 2025 -- DeHon 48

Input Sequence
 in Memory

Capture Outputs
 in Memory

Operator
 Under
 Test

High
Speed
Clock

Low speed, sequential load

Low speed, sequential offload

AXI Bus

48

9

Generalize

• Generalize to
input and output

• Feed from memories
• Compute full rate
• Write into memory

• What might this fail to test?

Penn ESE5320 Fall 2025 -- DeHon 49

Input Sequence
 in Memory

Capture Outputs
 in Memory

Operator
 Under
 Test

High
Speed
Clock

Low speed, sequential load

Low speed, sequential offload

AXI Bus

49

Burst Testing

• Issue
– May only see high speed for

computation/interactions that occur within a
burst period

– May miss interaction at burst boundaries
• Mitigation

– Rerun with multiple burst boundary offsets
– So all interactions occur within some burst
– Decorrelate interaction and burst boundary

Penn ESE5320 Fall 2025 -- DeHon 50

Input Sequence
 in Memory

Capture Outputs
 in Memory

Operator
 Under
 Test

High
Speed
Clock

Low speed, sequential load

Low speed, sequential offload

AXI Bus

50

Timing Validation
• Doesn’t need to be all testing either
• Static Timing Analysis to determine

viable clock frequency
– As Vivado is providing for you

• Cycle estimates as get from Vivado
– II, to evaluate a function

• Worst-Case Execution Time for
software

Penn ESE5320 Fall 2025 -- DeHon 51

51

Decompose Verification

Breaks into two pieces:
1. Does it function correctly?
2. What speed does it operate it?

– Does it continue to work correctly at that
speed?

Penn ESE5320 Fall 2025 -- DeHon 52

52

Learn More

• CIS6730 – Computer Aided Verification
• CIS5410 – includes verification for real-

time system properties
• CIS5000 – Software Foundations

– Has mechanized proofs, proof checkers

Penn ESE5320 Fall 2025 -- DeHon 53

53

Penn ESE5320 Fall 2025 -- DeHon 54

Big Ideas
• Assertions valuable

– Reason about requirements and invariants
– Explicitly validate

• Formally validate equivalence when
possible

• Valuable to decompose testing
– Functionality
– Functionality at performance

• …we can extend techniques to address
timing and support at-speed tests

54

10

Penn ESE5320 Fall 2025 -- DeHon 55

Admin
• Feedback
• No class on Wednesday

– Work on project
• Reading for Monday on Canvas
• P3 due Friday
• P4 out

55

