
ESE532 Spring 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Spring 2017 Final Monday, May 1

• Exam ends at 11:00am; begin as instructed (target 9:00am)

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

Problem 1 (35 pts) Problem 2 (35 pts) Problem 3 (30 pts)

(20–30 minutes) (40–50 minutes) (30–40 minutes)

a b c d e a b c d a b c d e f g h Total

5 5 5 10 10 5 20 5 5 3 6 3 3 3 3 6 3 100

Average 67, Std. Dev. 11

1

ESE532 Spring 2017

1. Consider the following computation:

int x[256], y[256], w[256][256], s[3];

while (true) {

for (i=0;i<256;i++) { // loop A

x[i]=input();

y[i]=0;

}

for (i=0;i<256;i++) // loop B

for (j=0;j<256;j++)

y[j]+=x[i]*w[i][j];

for (i=0;i<256;i++) // loop C

s[2]=max(y[i],s[2]);

s[1]=max(s[1],s[2]);

s[0]=max(s[0],s[1]);

for (i=0;i<2;i++) // loop D

output(s[i]);

}

Original intent was to output all 3; typo in given problem with loop bound of 2 instead
of 3.

• The initial input() provides a new input every 100 ns

• multiply is 5 ns operation, pipelineable to start one multiply every 1 ns

• local memory access (load, store) to w[][], x[], y[], s[] is 1 ns

• add and max are 1 ns operations

• ignore loop and indexing costs for this problem

2

ESE532 Spring 2017

(a) How many operations (load, store, add, max, multiply) in each labelled (A, B, C,
D) for loop?

Loop A B C D

Operations 512 5 × 216 4 × 3 × 28 2

or 256 or 3

(b) Where is the bottleneck in this computation?

Loop B
(c) What is the Amdahl’s law speedup if only the bottleneck is accelerated?

Assuming 100 ns is just time before guaranteed there is a
next input: 5×256+2+12

2+12 ≈ 92

If you assume that input operation takes 100 ns: 5×256+101+12
101+12 ≈

12
(d) What parallelism can be exploited in this task (both within and among loops)?

Describe all applicable options where appropriate.

Loop Parallelism Options

among coarse-grained pipeline parallelism

loops (across all)

A (nothing really, bottlenecked on input)

B data parallel (both task and SIMD)

pipeline, VLIW

C pipeline

VLIW with software pipelining

D could SIMD read

but not really have any need

3

ESE532 Spring 2017

(e) Describe how you would speedup this task so that it can consume one input every
100 ns, limited only by the input rate.

• Input gives us a goal of handing 1 input per 100 ns

• Start by running each loop as a separate, coarse-grain

dataflow pipeline task.

• This gives a goal of performing each (outer) loop iteration

in less than 100 ns.

• Only loop B needs acceleration

– A: Clearing y[i] can occur while waiting for next input

to show up

– C: 12 operations take 12ns, so can be pefrormed se-

quentially within the 100 ns cycle of the input

– D: The output here is also not a rate limiter (needs

even less than one output per 100 ns input)

• Loop B

– Need to perform 256 × 5 operations every 100 ns to

match the rate of the input. 256×5
100 = 12.8 operations

per nanosecond (timing on each operator).

– So, we need to perform at least 13 operations per 1 ns

cycle. Probably best to round that to 16.

– Operations are SIMD and a multiple of 16, so a 16-lane

vector unit used to accelerate the inner loop would do

the trick.

– Alternately, could break this into 16 parallel tasks,

each computing a different set of 16 y[i]’s.

4

ESE532 Spring 2017

This page nearly blank for pagination.

(Feel free to use for answer to 1e, but it is probably not necessary.)

5

ESE532 Spring 2017

2. Consider the following computation:
int Image[1024][1024], Model[3][1024][1024], wpixel[1024][1024];

boolean mpixel[1024][1024];

for (y=0;y<1024;y++)

for (x=0;x<1024;x++) {

int pixel=Image[y][x];

int M0=Model[0][y][x];

int M1=Model[1][y][x];

int M2=Model[2][y][x];

mpixel[y][x]=f(pixel,M0,M1,M2); // 10 mpy, 6 adds

int mupdate=g(pixel,M0,M1,M2); // 4 mpy, 10 adds

int updateval=h(pixel,M0,M1,M2); // 16 mpy, 8 adds

Model[mupdate][y][x]=updateval;

}

for (i=0;x<1024;i++) { // ERRORs: x<1024 should be i; assignments should be wpixel

if (mpixel[0][i]) mpixel[0][i]=1 else mpixel[0][i]=0;

if (mpixel[i][0]) mpixel[i][0]=1 else mpixel[i][0]=0;

}

for (y=1;y<1024;y++)

for (x=1;x<1024;x++) {

int imax=max(wpixel[y-1][x-1],max(wpixel[y-1][x],wpixel[y][x-1]));

if (mpixel[y][x]) wpixel[y][x]=imax+1; else wpixel[y][x]=0;

}

int xmax=0;

int ymax=0;

int maxval=0;

for (y=1;y<1024;y++)

for (x=1;x<1024;x++)

if (wpixel[y][x]>maxval) {maxval=wpixel[y][x]; xmax=x; ymax=y;}

int sy=max(0,ymax-16);

int sx=max(0,xmax-16);

for (y=sy;y<sy+16;y++)

for (x=sx;x<sx+16;x++)

output(Image[y][x]);

• Main memory is 256 M 32b ints; has a read and write latency of 100 ns, but can
stream sequential data at 1 ns per cycle for blocks up to 512 words.
streamIn(MainAddr,LocalAddr,n) – copy n≤512 32b ints to local memory in
100+n ns.
streamOut(LocalAddr,MainAddr,n) – copy n≤512 32b ints to main memory in
100+n ns.

• Local memory is 4K 32b ints and has a read/write latency of 1 ns.
• multiply, add, max, compare each take 1 ns.
• As written Pixel, Model, mpixel, and wpixel live in main memory.
• Ignore loop and indexing costs for this problem.

6

ESE532 Spring 2017

(a) With no memory streaming operations or local memories,

i. estimate runtime
220 (6 × 100 + 54 × 1)+210 (2 × 2 × 100)+220 (5 × 100 + 3 × 1)+220 (2 × 100 + 1)+
4 + 28 × 100 ≈ 1.4B

ii. identify bottleneck (which loop? memory or compute?) and support your
answer using your runtime estimate
First loop, memory

(b) Rewrite the code to localize and stream data You may combine loops where you
find it beneficial.

i. Identify the local variables you define and how they are laid out in the local
memory:

Address
begin end Variable

0 2047 localM[0]
2048 4095 localM[1]
4096 6143 localM[2]
6144 10239 local wpixel row
10240 12287 localImage
12288 12291 prevx
12292 prevy
12296 prevxy
12300 curr mpixel
12304 curr wpixel
12308 lmpixel
12312 mupdate
12316 updateval
12320 pixel
12324 M0
12328 M1
12332 M2
12336 imax
12340 xmax
12344 ymax
12348 maxval
12352 sx
12356 sy
12360 x
12364 y

7

ESE532 Spring 2017

ii. Show how the code is revised to use these local variables and stream fetch
operations.

int Image[1024][1024], Model[3][1024][1024];

int localM[3][512]; // was erroneously 1024 on original solution

int local_wpixel_row[1024];

int xmax=0;

int ymax=0;

int maxval=0;

int curr_mpixel, curr_wpixel;

int prevx, prevy, prevxy;

for (int y=0;y<1024;y++)

for (int xb=0;xb<1024;xb+=512) {

streamIn(&Image[y][xb],localImage,512);

streamIn(&Model[0][y][xb],&localM[0],512);

streamIn(&Model[1][y][xb],&localM[1],512);

streamIn(&Model[2][y][xb],&localM[2],512);

for (int xoff=0;xoff<512;xoff++) {

int x=xb+xoff;

int pixel=localImage[xoff];

int M0=localM[0][xoff];

int M1=localM[1][xoff];

int M2=localM[2][xoff];

curr_mpixel=f(pixel,M0,M1,M2); // 10 mpy, 6 adds

int mupdate=g(pixel,M0,M1,M2); // 4 mpy, 10 adds

int updateval=h(pixel,M0,M1,M2); // 16 mpy, 8 adds

localM[mupdate][xoff]=updateval;

if ((y==0) || (x==0)) {

prevy=0;

curr_wpixel=0;

imax=0;

}

else {

prevy=local_wpixel_row[x];

int imax=max(prevxy,max(prevy,prevx));

}

if (curr_mpixel) curr_wpixel=imax+1; else curr_wpixel=0;

local_wpixel_row[x]=curr_wpixel;

prevx=curr_wpixel;

prevxy=prevy;

if (curr_wpixel>maxval) {maxval=curr_wpixel; xmax=x; ymax=y;}

}

streamOut(&localM[0],&Model[0][y][xb],512);

streamOut(&localM[1],&Model[1][y][xb],512);

streamOut(&localM[2],&Model[2][y][xb],512);

8

ESE532 Spring 2017

}

int sy=max(0,ymax-16);

int sx=max(0,xmax-16);

for (int y=sy;y<sy+16;y++)

{

streamIn(&Image[y][x],&localImage,16);

for (int x=sx;x<sx+16;x++)

output(localImage[x]);

}

10 points for streaming in/out first loop
10 points for optimizing rest; full points for localizing mpixel, wpixel row; 5
points if keep image size mpixel/wpixel and use streaming on those.

9

ESE532 Spring 2017

(c) What is the runtime of your optimized design?

220 (69) + 211 (612 × 7) + 4 + 16 × 116 + 28 × 1 ≈ 81M
(d) Where is the bottleneck now?

Computation in first loop

10

ESE532 Spring 2017

This page intentionally left nearly blank for pagination.
(or, additional code and calculations)

11

ESE532 Spring 2017

3. Consider a function from A00, A01, A10, A11, B0, B1 to B2, B3:

t0 =
A00

A10
(1)

t1 =
A01

A11
(2)

t2 = t1 ∗B1 (3)

t3 = B0 − t2 (4)

t4 = t1 ∗ A10 (5)

t5 = A00 − t4 (6)

t6 = t0 ∗B1 (7)

t7 = B0 − t6 (8)

t8 = t0 ∗ A11 (9)

t9 = A01 − t8 (10)

t10 =
t3

t5
(11)

t11 =
t7

t9
(12)

t12 = A20 ∗ t10 (13)

t13 = A21 ∗ t11 (14)

t14 = A30 ∗ t10 (15)

t15 = A31 ∗ t11 (16)

B2 = t12 + t13 (17)

B3 = t14 + t15 (18)

Assume:

• A00, A01, A10, A11, B0, B1 available on inputs at beginning of cycle

• output B2, B3 on designated output port

• A20, A21, A30, A31 already in operator memories; you choose which

• add/subtract, multiply, divide are single-cycle operations

• add/subtract unit costs 1 units of area

• multiply unit costs 10 units of area

• divide unit costs 10 units of area

• memory bank costs 5 units of area

• i× o crossbar costs 0.5 · i · o units of area

• word-wide pipeline register costs 0.5 units of area

• 2 or 3 input mux is 1 unit of area

12

ESE532 Spring 2017

(a) What is the critical path bound for this computation?

6 cycles
(b) Show a pipelined datapath for this operation.

B2 B3

A20
A30 A21

A31

A01 A00 A10 A11B0B1

t1
t0

t2
t6 t4 t8

t3
t7

t5
t9

t10
t7

t12 t14 t13 t15

Note registers added (small squares) to balance path delays
from inputs. As shown, assumes a register on the output of
each operator.

(c) Estimate the area for the pipelined datapath.

(8 + 4) 10 + 1 × 6 + 9
2 = 130.5

Problem statement wasn’t clear if there were registers asso-
ciated with each operator, so may add 16 more registers for
the ones associated with the operators. Maybe also add reg-
isters for A20, A21, A30, A31. So, +16 or +20 register (+8
or +10 area units) also reasonable.

13

ESE532 Spring 2017

Output

B1
A01
A10

add/sub mpy div

B0
A00
A11

5x4 Crossbar
3x4

(d) What is the resource bound for this computation on a VLIW datapath with a
single add/subtract unit, a single multiplier, and a single divider (as shown)?

max
(

6
1,

8
1,

4
1

)
= 8

(e) Schedule the computation on the VLIW datapath with a single add/subtract
unit, a single multiplier, and a single divider (as shown) to minimize computation
cycles.
Mark each “operator” with the variable computed on the operator on that cycle;
mark each “input” with the variable being stored into the data memories on each
cycle (note: only one value can be stored into the data memories associated with
an operator on each cycle).

Cycle add/sub multiply divide mux0 mux1 output
operator input operator input operator input

0 t1 t1 A11 A01
1 t0 t0 A00 A10
2 t2 t2 B0
3 t4 t4 A10
4 t3 t6 t6 t3 B0
5 t5 t8 t8 t5 A00 A11
6 t7 t10 t10 t7 B0
7 t9 t12 t12 t9 A01
8 t14 t14 t11 t11
9 t13 t13
10 B2 t15 t15 B2
11 B3 B3
12
13
14
15

14

ESE532 Spring 2017

(f) Estimate the area of the VLIW datapath with a single add/subtract unit, a single
multiplier, and a single divider (as shown).

5 × 6 + 10 + 10 + 1 + 8 + 3×4
2 = 65

(g) Using no more than 100 units of area, provision a customized VLIW datapath for
this unit – how many operators of each type? total area?

Operator add/sub mpy div mux2 or mux3 Area

Number 1 2 1 2 (10) 91

2 muxes as input select; 10 total including the pair for each
of the 4 operators.
5 × 8 + 10 + 2 × 10 + 1 + 10 + 5×4

2 = 91
(h) Justify your choice of operators.

Resource Bound max
(

6
1,

8
2,

4
1

)
= 6. Multiply is the bottle-

neck resource, so priority to add. There is only enough space
to add one operator.

A schedule would even be better, but was not expected.
Arguments about maximum parallelism available (maximum
number of operators that could be usefully employed) were
good, but those only tended to be applicable for designs that
do not meet the area constraint (and are larger than the fully
pipelined design).

15

ESE532 Spring 2017

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a students performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another persons paper, article, or computer work and
submitting it for an assignment, cloning someone elses ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a students
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on ones resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another students efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for ones own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that students responsibility to consult with the instructor to clarify any
ambiguities.

16

