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In this assignment, we will profile an MPEG-2 encoder implementation on the ARM core of
the ZedBoard. The encoder source can be downloaded from the Eniac server.

Collaboration

Work with assigned partners.1 Writeups should be individual. Partners may share code and
profiling results and discuss analysis, but each writeup should be prepared independently.

Encoder Organization

The MPEG-2 encoder is a stripped-down version of the one in the MediaBench II benchmark
suite. Understanding video encoding should not be necessary to profile the code. Never-
theless, we will introduce the video encoder in some detail for convenience. An MPEG-2
encoder takes a video sequence that consists of frames (pictures). Each frame consists of
blocks of 16 × 16 pixels, the macroblocks. A pixel is represented by 3 values. One value
(Y) represents the intensity (gray-level), which is also called luminosity (luma). The other 2
values (U and V) represent the color. They are also referred to as chroma. There are 2 types
of macroblocks, intra and inter blocks. For inter blocks, we use information from a previous
frame to make a prediction of the macroblock. Intra blocks have no prediction. In addition,
we use 2 types of frames: I-frames and P-frames. I-frames contain only intra blocks, and
P-frames may contain inter blocks too. Figure 1 shows a block diagram of a typical encoder
implementation, which consists of the following components:

Original picture buffer A memory buffer in which the raw frames (pictures) of the video
sequence are stored. In our implementation, this is an memory area pointed to by the
global variable allframes. We load the frames into this area from the SD-card on
startup using the read_all_frames() function.

Bi-directional motion estimator The motion estimator searches for every macroblock
the most similar 16× 16 block in the previous frame. The block’s location is expressed
as the difference vector between the positions of the two blocks, called a motion vector.
In our encoder, the motion estimator is implemented as motion_estimation(). Note
that our motion estimator is actually not bi-directional.

1To be posted under Files in canvas.
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MC predictor / interpolator The motion-compensated (MC) predictor / interpolator
makes a prediction of the macroblocks based on the motion vector obtained by the
motion estimator, and a reconstruction of the last encoded frame. The prediction is
made by retrieving the 16 × 16 block of the reconstructed frame pointed to by the
motion vector. This is implemented in predict().

Subtractor If the 16× 16 block found in the previous frame by the motion estimator were
exactly the same as the macroblock to be encoded, we would only need the motion
vector in the decoder to reconstruct it. Unfortunately, that is rarely the case, so in
the Subtractor, we compute the difference between the prediction and the macroblock.
Ideally, the difference is small, and we don’t need many bits to encode the difference.

DCT The eye is more perceptive for lower frequencies than for higher frequencies. The
(forward) Discrete Cosine Transform (DCT) converts each macroblock difference to
the frequency domain such that we can take advantage of the eye’s senstivity profile.
The forward DCT has been implemented in fdct().

Q The quantizer (Q) discretizes the freqencies from the DCT. The quantization step size of
a frequency component depends on the sensitivity of the eye for that frequency. Larger
step sizes result in fewer used quantization levels. Each level results in a different code
word, so larger quantization steps yield less code. In this step, we may lose information,
which results in a lower picture quality. However, we choose the information that is lost
in an intelligent way, such that the perceived quality is impaired as little as possible.
Q is implemented as quant_intra() and quant_non_intra().

VLC The variable-length coder (VLC) stores all information necessary to reconstruct the
video sequence. This includes, among others, frame width and length, DCT frequency
components, and motion vectors. In our encoder, functions that output (a part of) the
encoding start with put, e.g., putbits() stores one value, and putpict() stores the
encoding of a frame.

IDCT and IQ The inverse quantizer (IQ) and inverse DCT (IDCT) perform the inverse of
the Q and DCT components in order to reconstruct the difference between the mac-
roblock and the prediction. IQ is implemented as iquant_intra() and iquant_non_intra().
The IDCT is in itransform().

Adder The adder makes the final reconstruction of the macroblock by adding the difference
from the IDCT to the prediction from the motion compensation.

Buff This is the output buffer, in which the encoded frames are stored. In our imple-
mentation, this is output_buf. The encoded frames are written back to disk using
write_all_output().

The encoder has a few configuration parameters, which are stored in a file called Config.par

at the root of the SD-card. It includes also a format specifier that selects the raw input files,
and the output file.
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Importing the Encoder

To import the video encoder into SDSoC, we have to follow these steps:

1. Launch SDSoC, and open the workspace that you used before. You can also create a
new workspace.

2. Create a new Board Support Package. SDSoC will ask you whether you would like to
create a Hardware Platform Specification as well, which you should confirm. Enter a
name for the specification in the New Hardware Project dialog that pops up, point Tar-
get Hardware Specification to platforms/zed/hardware/prebuilt/export/zed.hdf

in your Xilinx SDSoC root directory, and dismiss the dialog to complete the hardware
platform specification.

3. In the New Board Support Package Project dialog, you should enter a name for the
board support package (BSP). Make sure that the OS is set to standalone, and press
Finish.

4. Check the box in front of xilffs in the Board Support Package Settings dialog, and
dismiss it.

5. Change the value of the define _USE_STRFUNC in the header file
libsrc/xilffs_v3_3/src/include/ffconf.h in the BSP to 1.

6. Build the BSP project.

7. Create an empty SDSoC project.

8. Import the code into SDSoC into the src subdirectory of your project. You can find
how to import code in Eclipse manual. The easiest way is to select Archive File as
import source in the import dialog.

9. Inform the compiler about the location of the header files and libraries in the BSP.
You can do this in the Paths and Symbols section of the Project Properties dialog.
Add the ps7_cortexa9_0/include subdirectory of the BSP as include directory, and
add /standalone_bsp_0/ps7_cortexa9_0/lib as library path. Let SDSoC rebuild
the index again when it asks you.

10. Download the video and configuration files from Eniac. Extract the files to the root of
an SD-card. Place the SD-card in the card reader of the ZedBoard.

11. You can now build and run the code on the target as before.
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Homework Submission

1. Learning and navigating the tools. Document all the problems you encountered
in working the assignment and how you solved them. For each, include:

(a) Step (if applicable)

(b) OS you were running

(c) Error message or unexpected behavior you encounted

(d) How the problem was resolved

(e) How you found the solution (e.g., how did you experiment or reason through
an answer, which document had the answer, where on the web did you find an
answer, which student or TA was able to point out the answer)

2. Firmware and OS Infrastructure What is xilffs, and why do you need to incor-
porate it into the build?

3. Measure

(a) Report the throughput achieved (frames/second) compressing the provided video
sample using the default single ARM Core mapping. For this, you will need to
instrument the code. Do not include the time spent on loading / storing the
configuration, quantization matrices, and video frames from / to disk in your
estimate. You can find out how to do this in the SDSoC Environment User
Guide. You can find the clock frequency in the project.sdsoc file.

(b) Create an execution profile of the encoder using TCF profiler. Add the results
for the first 10 bins to your report. You are allowed to make a screenshot of the
TCF Profiler view. Profiling is described in the same section of the user guide as
instrumentation.

4. Analyze

(a) Using the TCF profiler output, which function consumes most execution time?

(b) Use Amdahl’s Law to determine the highest overall encoder performance im-
provement that you may obtain by optimizing the function that you found in the
previous question.

(c) Assuming you bring the input data in from one of the following sources, what
frame rate could you possibly achieve (i.e., ignore the compute requirements for
this, focus on I/O)? Will input from the source be a bottleneck compared to the
computation above?

i. SDcard

ii. 512-MB DDR3 SDRAM

iii. Gigabit Ethernet interface

iv. USB
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(d) Per input pixel, how much data is read by each of the following routines (on
average, in total over an entire frame):

i. dist1 without interpolation and assuming distlim=∞.

ii. fdct

iii. putAC

(e) Considering the first loop body of dist1 (if (!hx && !hy))

i. estimate the total number of compute operations in one loop iteration of this
loop body.

ii. determine the critical path length for the same loop body. Exploit the asso-
ciativity of addition.
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Figure 1: MPEG-2 encoder block diagram
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