
ESE532 Spring 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Spring 2017 HW4: Thread Parallel Wednesday, February 1

Due: Friday, February 10, 5:00pm

In this assignment, we will map the MPEG-2 encoder implementation on multiple MicroBlaze
processor cores. We will start with the same encoder source as in homework 3.

Collaboration

Work with assigned partners.1 Writeups should be individual. Partners may share code and
profiling results and discuss analysis, but each writeup should be prepared independently.

Hardware Platform

So far, we have used the provided zed platform that instantiates only the hard-wired func-
tionality of the Zynq SoC, such as the ARM processors. Xilinx calls this part of the SoC
the Processing System (PS). In addition to the PS, the provided platform configures 12
MicroBlaze processors on the programmable Logic (PL). The Xilinx MicroBlaze is a soft-
core microprocessor. “Soft-core” refers to the fact that the processor is implemented on a
reprogrammable device, as opposed to a “hard-core” processor, which is physically imple-
mented in silicon (like the ARM processors on the Zynq). The processor is configurable,
i.e., one can select parameters such as the instruction and data cache sizes and the inclusion
of multipliers, dividers, etc. Configuration happens at design time, before the processor is
mapped on the FPGA. For this assignment, you will be treating the processor array as fixed
hardware (it represents a particular, fixed SoC platform); for future assignments (at least
for the project), you will be able to customize the cores and other logic.

Memory Map

Every instruction or data bus of each processor has its own view of the memory hierarchy,
which is represented by an address map. For every application (process running on one
of the processor cores), we dedicated an area in memory; that is, we are effectively giving
each processor a private memory to store the instructions for the process it runs; we’re just

1To be posted under Files in canvas.

1

ESE532 Spring 2017

putting them in a single shared address space. The following table describes the SDRAM
memory allocation as seen from the data bus of the processors:

Start address End address Description

0x00100000 0x03FFFFFF ARM Application (only visible to ARM)
0x10000000 0x10FFFFFF MicroBlaze 0 application
0x11000000 0x11FFFFFF MicroBlaze 1 application
0x12000000 0x12FFFFFF MicroBlaze 2 application
0x13000000 0x13FFFFFF MicroBlaze 3 application
0x14000000 0x14FFFFFF MicroBlaze 4 application
0x15000000 0x15FFFFFF MicroBlaze 5 application
0x16000000 0x16FFFFFF MicroBlaze 6 application
0x17000000 0x17FFFFFF MicroBlaze 7 application
0x18000000 0x18FFFFFF MicroBlaze 8 application
0x19000000 0x19FFFFFF MicroBlaze 9 application
0x1A000000 0x1AFFFFFF MicroBlaze 10 application
0x1B000000 0x1BFFFFFF MicroBlaze 11 application

In addition, we devote areas for communication between the ARM and the MicroBlaze (and
potentially among the MicroBlaze processors). We put those in a 256 KB On-Chip-Memory
(OCM). The following table shows the memory allocation of the OCM:

Start address End address Description

0xFFFC0000 0xFFFC3FFF Communication area 0
0xFFFC4000 0xFFFC7FFF Communication area 1
0xFFFC8000 0xFFFCBFFF Communication area 2
0xFFFCC000 0xFFFCFFFF Communication area 3
0xFFFD0000 0xFFFD3FFF Communication area 4
0xFFFD4000 0xFFFD7FFF Communication area 5
0xFFFD8000 0xFFFDBFFF Communication area 6
0xFFFDC000 0xFFFDFFFF Communication area 7
0xFFFE0000 0xFFFE3FFF Communication area 8
0xFFFE4000 0xFFFE7FFF Communication area 9
0xFFFE8000 0xFFFEBFFF Communication area 10
0xFFFEC000 0xFFFEFFFF Communication area 11

The OCM memory is not cached and is therefore guaranteed to be consistent among the
processors. That is why it can be used safely for processor-to-processor communication.

The SDRAM data is cacheable in the MicroBlaze processors and therefore not kept consis-
tent among the processors. This will work fine as long as you use it for private or read-only
data from the MicroBlaze processor threads. However, if you try to write to this memory
from one processor and read it from another, there is no guarantee the reader will see the
new value written. If you follow the discipline of privatizing all data in SDRAM and only
using the OCM for communications, you will not have to think directly about the impact of
the caches hiding data changes in the SDRAM region.

Nonetheless, it may be useful to store large shared data in the SDRAM that remains read-
only during most of your computations, but needs to change periodically—such as the current

2

ESE532 Spring 2017

frame that you are encoding. This is reasonable to do, but you will then need to take care
to flush the MicroBlaze data caches when this shared data changes. You can cause the
MicroBlance to force a data cache flush with: Xil_DCacheFlush(). Note that the visible
range of SDRAM of the MicroBlaze processors is limited to 0x10000000–0x1FFFFFFF, so
the MicroBlazes cannot access the ARM application memory area.

Exploring the Platform

The hardware platform was created in Vivado. Vivado is a Xilinx tool for developing hard-
ware for the FPGA. We will only explore the platform in this assignment. It should not be
necessary to make changes.

1. Download the hardware platform from the course website and unpack it.

2. Launch Vivado. In Linux, you can launch Vivado from the terminal using the command
vivado.

3. Open the project with the platform. Select File→Open Project... from the menu. In
the Open Project dialog, choose the hw4_pfm/vivado/hw4_pfm.xpr file in the platform
that you extracted before.

4. Further instructions for exploring the platform are given in the Homework Submission
section.

Building a Multithreaded Example Design

In this assignment, we will create many projects, so we recommend that you use recognizable
names. Note that our method to execute code on the 12 processors is rather laborious and
primitive, but we don’t have a better method at this point.

1. Launch SDSoC, and select a workspace. We will create many projects for this assign-
ment, so you may want to create a new workspace.

2. Create a Hardware Platform Specification for the downloaded platform. We suggest
calling it hw4_hw. Select the hw4_pfm/vivado/hw4_pfm.sdk/hw4_top_wrapper.hdf

file from the downloaded platform as target.

3. Create an empty Application Project for a standalone OS on the ps7_cortexa9_0

processor, which is one of the ARM cores. We will not be using the second ARM core.
We suggest calling the project hw4_arm_app. In the New Project dialog, choose the
option to create a new BSP. We suggest that you call it hw4_arm_bsp. Enable the
xilffs library in the BSP because we will load the applications from the SD-card in
this exercise.

3

http://www.seas.upenn.edu/~ese532/spring2017/hw4_hw.tar.gz

ESE532 Spring 2017

4. Create 12 empty Application Projects for a standalone OS. Target each of the projects
to a different MicroBlaze processor. These processors are called microblaze_0, microblaze_1,
etc. We suggest naming the projects hw4_mb0_app, hw4_mb1_app, etc. Select the op-
tion to create a new BSP in the New Project dialog of each project that you create.
We suggest naming the BSPs hw4_mb0_bsp, hw4_mb1_bsp, etc.

5. Create a First Stage Boot Loader (FSBL). We will load the applications automatically
from the SD-card. The FSBL is responsible for this. To create an FSBL, create a
Application Project for a standalone OS. We suggest to call this project hw4_fsbl. In
the New Project dialog, choose the option to use an existing BSP. The FSBL will run
on the ARM. We already have a BSP for the ARM, hw4_arm_bsp, so reuse it. Choose
the Zynq FSBL as template on the next page and finish the dialog.

6. Increase the number of partitions that FSBL can load. By default, the limit is 14
partitions. Partitions are bitstreams, code or data segments from the application, or
data sets. An application typically has multiple partitions, so 14 partitions are not
sufficient for 12 applications. You can change the limit by modifying the value of the
#define MAX_PARTITION_NUMBER in the header file src/image_mover.h of the FSBL
project.

7. Pass the symbols NON_PS_INSTANTIATED_BITSTREAM and DEBUG_FSBL to the compiler
while building the FSBL. The first symbol guarantees that the MicroBlazes do not come
out of reset before the ARM has initialized the necessary data. DEBUG_FSBL will make
the FSBL generate debug output, which may come in handy if your application is not
loaded correctly. To pass the symbols, open the Project Properties of the FSBL project.
Select C/C++ Build→Settings on the left side. In the Tool Settings tab, choose ARM
v7 gcc compiler→Symbols. Under Defined symbols (-D), add the symbols. Note that
this has the same effect as adding a #define with the symbol on top of every C source
file in the project, but you won’t have to change the source.

8. Create a source file in the src directory of your ARM application project, and copy
the code from hw4_arm_app.c in the hw4_example.tar.gz archive. You can download
the archive from here.

9. We have to link the ps7_init.c into the ARM application. Choose the src directory
of the ARM application project project. Right-click on it, and select Import.... In
the dialog box, select General→File System and press Next. Browse to the hardware
platform specification workspace. Choose the ps7_init.c file. Reveal the link options
by pressing the Advanced... button. Enable Create links in workspace and dismiss the
dialog.

10. Add the hw4_hw directory to the includes of the ARM application.

11. Create a source file in the src directory of each of the MicroBlaze application projects
with the code from hw4_mb_app.c in the hw4_example.tar.gz archive.

4

http://www.seas.upenn.edu/~ese532/spring2017/hw4_example.tar.gz

ESE532 Spring 2017

12. Replace <ADDRESS> and <NUMBER> in each of the MicroBlaze application source files
with the address of the communication area in the table above and the number of the
MicroBlaze respectively.

13. Make sure that the MicroBlaze applications are loaded into the main SDRAM. The in-
stantiated memories in the PL have a lower latency, but they are too small to store the
code. Select a MicroBlaze project. Go to Xilinx Tools→Generate linker script in the
menu. Change the setting of Place Code Sections in: to ps7_ddr_0_HP0_AXI_BASENAME.
Repeat for the data and heap and stack sections. Generate the linker script by pressing
Generate. Repeat this for all MicroBlaze application projects. Don’t do this for other
projects.

14. Build all projects.

15. Create a file called hw4.bif with the following lines:

the_ROM_image:

{

[bootloader]<Workspace>/hw4_fsbl/Debug/hw4_fsbl.elf

<Workspace>/hw4_hw/hw4_top_wrapper.bit

<Workspace>/hw4_arm_app/Debug/hw4_arm_app.elf

<Workspace>/hw4_mb0_app/Debug/hw4_mb0_app.elf

<Workspace>/hw4_mb1_app/Debug/hw4_mb1_app.elf

<Workspace>/hw4_mb2_app/Debug/hw4_mb2_app.elf

<Workspace>/hw4_mb3_app/Debug/hw4_mb3_app.elf

<Workspace>/hw4_mb4_app/Debug/hw4_mb4_app.elf

<Workspace>/hw4_mb5_app/Debug/hw4_mb5_app.elf

<Workspace>/hw4_mb6_app/Debug/hw4_mb6_app.elf

<Workspace>/hw4_mb7_app/Debug/hw4_mb7_app.elf

<Workspace>/hw4_mb8_app/Debug/hw4_mb8_app.elf

<Workspace>/hw4_mb9_app/Debug/hw4_mb9_app.elf

<Workspace>/hw4_mb10_app/Debug/hw4_mb10_app.elf

<Workspace>/hw4_mb11_app/Debug/hw4_mb11_app.elf

}

Replace all strings in angle brackets with the locations on your system. If you chose
different project names than we suggested, you will have to adapt those too. You can
make the file with an ordinary text editor in a convenient location. Note that you can
also create the file using the SDSoC GUI by choosing Xilinx Tools→Create Boot Image
from the menu.

16. Create the boot image by issuing the following command in the directory with the
hw4.bif file:

bootgen -image hw4.bif -o boot.bin -w

5

ESE532 Spring 2017

The -w flag orders bootgen to overwrite an existing boot.bin file. Note that you can
skip this step if you used the GUI in the previous step.

Debugging a Multithreaded Example Design

1. Place an SD-card in the memory card reader of your PC with SDSoC.

2. Copy the boot.bin file to the root directory of the SD-card.

3. Make sure that your ZedBoard is shut down.

4. Make sure that your PC has finished writing to the SD-card, and place the SD-card in
the card slot on the ZedBoard.

5. Change the boot mode of the ZedBoard to SD-card. You can do that using the same
jumpers as in homework 1. Refer to the ZedBoard manual for the right positions.

6. Connect both USB connectors to the PC as before.

7. Power up the ZedBoard. The blue DONE LED should light up after a while.

8. Open the Debug Configurations dialog in SDSoC. Select Xilinx C/C++ application on
the left side. Create a new configuration by pressing the corresponding icon above the
same list. In the Target Setup tab, change the Debug Type to Attach to running target.
Press Debug to launch a debug session.

9. In the Debug perspective, you will see the name of your debug configuration in the
Debug window. If you expand the tree further, you will see the ARM cores under APU,
and the MicroBlaze cores under xc7z020→Debug Module at USER2. You can select
any of the cores and press the suspend icon above the window to stop it temporarily.
The current instruction will be shown in a Disassembly window. Most likely, this will
be of little use because the machine code is not annotated with source lines.

10. We can show the source lines by adding symbol files to the debug configuration. A
symbol file contains the addresses of source lines and statically allocated data objects in
your code. They are generated for debug purposes and typically not provided with the
final application. The default compiler configuration does not generate symbol files,
but it puts the symbols in the executable (ELF) file. Open the Debug Configurations
dialog again. Select the debug configuration that you created and go to the Symbol
Files tab. Change the Debug context to the processor for which you would like to
provide the symbols. Press Add... on the right side and enter the path to the ELF
file for the given processor. It should be in the Debug directory of the associated
application project. Close the dialog by pressing OK. You can add the symbol files for
all processors, but it is probably wiser to add them as you need them.

11. Once you have added a symbol file, you can debug code on the processor as usual.

6

ESE532 Spring 2017

Homework Submission

1. Learning and navigating the tools.

Document all the problems you encountered in working the assignment and how you
solved them. For each, include:

(a) Step (if applicable)

(b) OS you were running

(c) Error message or unexpected behavior you encounted

(d) How the problem was resolved

(e) How you found the solution (e.g., how did you experiment or reason through
an answer, which document had the answer, where on the web did you find an
answer, which student or TA was able to point out the answer)

2. Teamwork

(a) Document the work sessions with your partner (where, when, duration).

(b) How did you collaborate on the work? (pair programming is acceptable, explain)

(c) What background basics, tricks, or techniques did you learn from your partner?

(d) Provide highlights for cases where working together allowed you to understand
deeper, combine insights, avoid pitfalls, and/or build confidence in your directions
and solutions.

3. Hardware Platform

(a) Open the Block Diagram of the platform in Vivado. In the Flow Navigator on
the left side, press Open Block Design. Zoom buttons are on the left side of
the diagram. Thick lines connecting blocks are buses; thin lines are single wires.
Select a block to see information in the Block Properties window. Double-click
on a block to see the most important settings in a dialog. Answer the following
questions about the current configuration:

i. How large is the instruction cache of each MicroBlaze?

ii. What is the widest multiplication that the MicroBlaze can perform?

iii. How many BRAMs does each MicroBlaze use?

iv. Describe how microblaze_3 can access data in the SDRAM. Mention the
buses and components that are involved.

v. What is the clock frequency of the MicroBlaze?

vi. At which address does microblaze_9 start after booting up? You can find it
in the Properties tab of the Block Properties window. The address is given
under CONFIG→C_BASE_VECTORS.

7

ESE532 Spring 2017

(b) Open the Address Editor. You can find it among the tabs immediately above the
block diagram. The editor shows a memory map for every instruction and every
data bus on each MicroBlaze processor. No address map for the PS is shown
because it is not configurable.

i. How large is the memory area reserved for SDRAM in the memory map of
the data bus of microblaze_1?

ii. Which processors can see the instruction at the starting address of microblaze_9?

(c) Look at the Project Summary. You can open it by selecting Window→Project
Summary from the menu. Which resource type has the relatively fewest resources
remaining in this implementation? What is the purpose of this type of resource?

4. Multithreading

Accelerate the MPEG2 encoder by introducing threads. You can use the example as a
starting point. You may change the format of the communication_area structure as
you wish.

(a) Revise the provided code to run fullsearch on one MicroBlaze

i. Report the encoder execution time when fullsearch is executed on one
MicroBlaze.

ii. Describe any debugging you needed to do to get the fullsearch thread
working correctly on the MicroBlaze

(b) Consider how to decompose fullsearch into 2 threads

i. Describe 3 possible decompositions.

ii. Give the advantages and disadvantages of each decomposition.

(c) Select and implement one solution

i. Include the code for the 2 threads in your writeup. This should just be the
parts of the code that you changed from the original.

ii. Report the speedup that running this decomposition on MicroBlazes achieves.

iii. Describe any additional debugging you needed to do to get the fullsearch

thread working correctly on two MicroBlaze cores.

iv. Describe any optimizations and tuning you needed in order to achieve this
speedup.

(d) Scale to all 12 MicroBlaze processors

i. Describe a promising encoder decomposition that makes use of all processors.

ii. What speedup do you expect under ideal circumstances?

iii. Include the code for your 12 thread solution. Again, just the code changed
for this solution.

iv. Report the speedup that running this decomposition achieves.

v. Describe debugging, optimization, and tuning to achieve correct operation
and speedup.

8

ESE532 Spring 2017

vi. Explain potential reasons for the difference between ideal and actual speedup
(identify non-computational bottlenecks and overheads (computational or
not) that are impacting the execution).

9

