
ESE532 Spring 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Spring 2017 HW6: Hardware Accelerator Sunday, February 18

Due: Friday, March 3, 5:00pm

In this assignment, we will accelerate the video encoder by implementing functions on the
programmable fabric. To save you some time, we provide the initial SDSoC project, which
can be downloaded from here.

For this homework, you will have a new partner. You can find the partner assignment in the
Files section of Canvas.

Timeline

This homework is due in two weeks instead of the usual one week. It consists of three
questions. The first two questions provide more guidance than the last question. Therefore,
we suggest that you complete the first two questions (3 and 4) this week and the last question
(5) next week. If you submit the answers to the first two questions before 5:00pm on February
24, we will make an effort to grade it before February 27. Should you decide to submit it
later, but before the March 3 deadline, you will not be penalized, however.

Note that there will be no office hours on February 21 and February 23 due to absence of
the TA. We encourage you to send your questions on Piazza instead.

Hardware Acceleration in SDSoC

The first steps towards hardware implementation of a function in SDSoC are explained in
Chapter 2 of the SDSoC tutorial. There are several methods that you can use to communicate
with your accelerator from the software. You can indicate with a pragma which method you
would like to use. The SDSoC pragmas are described in Chapter 17 of the SDSoC manual.

Vivado HLS

Ideally, you can tell SDSoC which function to implement in hardware, add a few pragmas,
and SDSoC does the rest. In practice, you will often discover that existing functions cannot
be mapped directly on the hardware because they are not synthesizable or inefficient. In
those cases, you will need to rewrite your code. Although you can do this in SDSoC, our
experience is that the errors and warnings in SDSoC are often unclear or hidden. Moreover,

1

http://www.seas.upenn.edu/~ese532/spring2017/hw6_sw.tar.gz
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug1028-intro-to-sdsoc.pdf#page=18
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug1027-sdsoc-user-guide.pdf#page=86

ESE532 Spring 2017

a debug cycle typically takes longer. Hence, we suggest to start the acceleration of a function
in Vivado HLS, which has better debug facilities. Once your function has been verified and
synthesized successfully in Vivado HLS, you can copy it to SDSoC and integrate it in the
system.1 Vivado HLS is also based on Eclipse, so most of the GUI should be similar.

Creating a new project is explained here. Make sure you enter the top-level function during
the creation of the project (although you can also change it later). The top-level function is
the function that will be called by the part of your application that runs in software. Vivado
HLS needs it for synthesis. You can also indicate which files you want to create. It is wise
to create a testbench file, too, while you are creating the project.

Although you can and should also verify your system in SDSoC like before, you will generally
need more time to build your project, so we suggest to make a testbench in Vivado HLS
to debug the hardware. The requirements for testbenches are not any different from other
software applications written in C. Similar to them, they have a main function that is invoked.
To the main function you can add any functionality needed to test your function. That
includes calling the top function that you would like to test. When the testbench is satisfied
that the function is correct, it should return 0. Otherwise, it should return another value.

You can run the testbench by selecting Project → Run C Simulation from the menu. A
window should pop up. The default settings of the dialog should be fine. You can dismiss
the dialog by pressing OK. You can see in the Console whether your test has passed. If
your test fails, you can run the test in debug mode. This can be done by repeating the
same procedure, except that you should check the box in front of Launch Debugger this time
before you dismiss the dialog. This will take you to the Debug perspective, which should
look familiar by now. You can go back to the original perspective by pressing the Synthesis
button in the top, right corner. Note that in SDSoC you may be used to the fact that it
builds your project automatically when you change your code and start or relaunch a debug
session. Unfortunately, Vivado HLS will only build your code if you select Run C Simulation
from our experience.

Once you are satisfied with your code, you can run Solution → Run C Synthesis → Active
Solution from the menu to synthesize your design. You can also verify the synthesized
version of your accelerator in your testbench. If you choose to do so, Vivado HLS will run
your accelerator in a simulator, so this method is called C/RTL Cosimulation. Simulation
can take considerably more time, so it may not be practical for every testbench. Anyway,
you can start it by choosing Solution → Run C/RTL Cosimulation from the menu.

To get some insight into what the hardware that Vivado HLS creates looks like, you can read
this. The different pragmas that you can use in your functions are listed in the sections for
the associated TCL commands in the Vivado HLS manual. If you need information about
the PIPELINE pragma, you can look up the set_directive_pipeline command.

1SDSoC uses Vivado HLS under the covers. Ideally, it would hide the need to use it independently, but
it also hides useful errors and warnings.

2

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf#page=23
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf#page=6
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf#page=313

ESE532 Spring 2017

Homework Submission

Please be concise in your answers.

1. Learning and navigating the tools.

Document all the problems you encountered in working the assignment and how you
solved them. For each, include:

(a) Step (if applicable)

(b) OS you were running

(c) Error message or unexpected behavior you encounted

(d) How the problem was resolved

(e) How you found the solution (e.g., how did you experiment or reason through
an answer, which document had the answer, where on the web did you find an
answer, which student or TA was able to point out the answer)

2. Teamwork

(a) Document the work sessions with your partner (where, when, duration).

(b) How did you collaborate on the work? (pair programming is acceptable, explain)

(c) What background basics, tricks, or techniques did you learn from your partner?

(d) Provide highlights for cases where working together allowed you to understand
deeper, combine insights, avoid pitfalls, and/or build confidence in your directions
and solutions.

3. Initial Implementation

(a) Adapt the fullsearch function such that it can be mapped onto hardware. Fol-
low these steps:

i. fullsearch reduces the search area when it extends beyond the edge of the
image. This results in fewer loop iterations. Loops with varying numbers of
iterations do not accelerate well in hardware, so we will only accelerate the
common case. Create a new function in Vivado HLS that is a specialization
of fullsearch for the cases in which we can use the full search area.

ii. The input variables org and blk refer to the frame buffers, which contain
much more data than needed. Some of the data transfer methods that we will
explore are limited to a buffer of 16KB. Therefore, the next step is to adapt
your new function such that it takes input from 2 smaller buffers that contain
only the data in the search area and the current macroblock respectively.
Declare the input parameters as arrays instead of pointers such that SDSoC
has no trouble determining the the size of the blocks.

3

ESE532 Spring 2017

iii. Set the clock period to 7 ns. In the menu, go to Solution→Solution Setting....
That should open up the Solution Settings dialog. Select Synthesis on the
left side, and enter the clock period on the right.

iv. Verify that your new function works and synthesizes. As mentioned earlier,
we suggest making a testbench in Vivado HLS. You can test your motion
estimator using actual data from the encoder that you extract, but it is
probably easier to test with some artificial data that you prepare.

v. Integrate your new function in the encoder. You will need to adapt frame_ME
such that it calls the old fullsearch or your new function depending on the
search area size. Verify that the integration works.

Communicate with the first version of your accelerator via shared memory. You
can instruct SDSoC to use shared memory using the zero_copy pragma. Show
the code changes that you made so far.

(b) Report the average duration of one call to your new function in the application
without hardware acceleration on the ZedBoard at optimization level -O2. Report
also the execution time needed for the entire application.

(c) What does Amdahl’s Law tell you about the maximum potential application
speedup you can get from accelerating your new fullsearch function?

(d) Report the speedup that SDSoC expects the encoder to reach after accelerating
the your new fullsearch in hardware. You can find this information in the
Performance Estimation Report. How to generate this report is described in the
SDSoC environment introduction.

(e) Report the expected speedup when data is transferred via DMA. You will need
to add the right pragma(s) for this.

(f) Choose the implementation with the best expected speedup, and run it on the
FPGA (without performance estimation). Report the average duration of a call
to your new function. Report also the execution time of the entire application.

4. Explore Accelerator

(a) Review the resource utilization and schedules in Vivado HLS. Schedules can be
very insightful for pragmas.

i. What is the number of flipflops that your function utilizes according to the
synthesis report?

ii. What is the initiation interval of the innermost loop of your function? You
can find it in the Analysis perspective.

(b) Include the Data Motion Report for your accelerator in your report, and answer
the following related questions:

i. Describe how the pixels in the search area are transported to your accelerator.

ii. Explain why a buffer in paged memory can increase the complexity of the
DMA controller.

4

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug1028-intro-to-sdsoc.pdf#nameddest=xTutorialEstimatingSystemPerformance

ESE532 Spring 2017

(c) Answer the following questions about the hardware implementation. You can view
the hardware by opening the project in <Project>/SDDebug/_sds/p0/ipi/zed.xpr

in Vivado. Here, <Project> is the directory of the SDSoC project in which you
built your hardware.

i. Explain how the motion vector is transfered from the accelerator to the pro-
cessor. Mention the hardware blocks and buses that are involved.

ii. Report the address and size of the memory area that is assigned to your
accelerator.

iii. Include a picture of your FPGA implementation, with your hardware function
highlighted. To view the implementation, press the Implementation→Open
Implemented Design in the Flow Navigator on the left side of the Vivado
window. In the Netlist window, you can find a module with the name of
your function and a _0 suffix. Right-click on it, select Highlight, and choose
a color.

5. Exploring Variant Hardware Implementation Design Choices

Improve the performance of the motion estimation.

(a) Try five different implementations of your function in which you apply one pragma
that could improve the performance at a time. Show how and where you apply the
pragma and report the encoder performance and hardware resource utilization for
each case. Some pragmas that you could try are: the HLS pipeline, HLS unroll,
HLS array_partition, HLS dataflow, HLS inline pragma, or SDS data_mover.
Feel free to change the code as necessary, as long as the code is semantically iden-
tical and you show the code changes.

(b) Show the implementation of your function that yields the best performance. Re-
port the obtained encoder performance. Limit your search to combinations of the
optimizations that you tried. Trying all combinations will probably be too time-
consuming, so select the best implementation based on performance estimates,
reasoning, and the results above.

5

