
1

Penn ESE532 Spring 2017 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 10: February 15, 2017
High Level Synthesis (HLS)

C-to-gates

Penn ESE532 Spring 2017 -- DeHon 2

Today
•  Spatial Computations from C

specification
– Basic transforms
– Limitations from C semantics

Message
•  C (or any programming language)

specifies a computation
•  Can describe spatial computation
•  Underlying semantics is sequential

– Watch for unintended sequentialization
– Probably write C for spatial differently than

you write C for processors

Penn ESE532 Spring 2017 -- DeHon 3

Coding Accelerators

•  Want to exploit FPGA logic on Zynq to
accelerate computations

•  Traditionally has meant develop
accelerators in
– Hardware Description Language (HDL)

•  E.g. Verilog ! undergrads see in CIS371
– Directly in schematics
– Generator language (constructs logic)

Penn ESE532 Spring 2017 -- DeHon 4

Course “Hypothesis”

•  C-to-gates synthesis mature enough to
use to specify hardware
– Leverage fact everyone knows C

•  (must, at least, know C to develop embedded
code)

– Avoid taking time to teach Verilog or VHDL
•  Or making Verilog a pre-req.

– Focus on teaching how to craft hardware
•  Using the C already know
•  …may require thinking about the C differently

Penn ESE532 Spring 2017 -- DeHon 5

Discussion [open]

•  Is it obvious we can write C to describe
hardware?

•  What parts of C translate naturally to
hardware?

•  What parts of C might be problematic?
•  What parts of hardware design might be

hard to describe in C?

Penn ESE532 Spring 2017 -- DeHon 6

2

Advantage

•  Use C for hardware and software
– Test out functionality entirely in software

•  Debug code before put on hardware where
harder to observe what’s happening

– Explore hardware/software tradeoffs by
targeting same code to either hardware or
software

Penn ESE532 Spring 2017 -- DeHon 7

Preclass F

•  Ready for preclass f?

•  Skip to preclass f

Penn ESE532 Spring 2017 -- DeHon 8

Penn ESE532 Spring 2017 -- DeHon 9

C Primitives
Arithmetic Operators

•  Unary Minus (Negation) -a
•  Addition (Sum) a + b
•  Subtraction (Difference) a - b
•  Multiplication (Product) a * b
•  Division (Quotient) a / b
•  Modulus (Remainder) a % b

Things might have a hardware operator for…

Penn ESE532 Spring 2017 -- DeHon 10

C Primitives
Bitwise Operators

•  Bitwise Left Shift a << b
•  Bitwise Right Shift a >> b
•  Bitwise One's Complement ~a
•  Bitwise AND a & b
•  Bitwise OR a | b
•  Bitwise XOR a ^ b

Things might have a hardware operator for…

Penn ESE532 Spring 2017 -- DeHon 11

C Primitives
Comparison Operators

•  Less Than a < b
•  Less Than or Equal To a <= b
•  Greater Than a > b
•  Greater Than or Equal To a >= b
•  Not Equal To a != b
•  Equal To a == b
•  Logical Negation !a
•  Logical AND a && b
•  Logical OR a || b

Things might have a hardware operator for…
Penn ESE532 Spring 2017 -- DeHon 12

Expressions:
combine operators

•  a*x+b

A connected set of operators
 ! Graph of operators

*

+

a x
b

3

Penn ESE532 Spring 2017 -- DeHon 13

Expressions:
combine operators

•  a*x+b
•  a*x*x+b*x+c
•  a*(x+b)*x+c
•  ((a+10)*b < 100)

A connected set of operators
 ! Graph of operators

Penn ESE532 Spring 2017 -- DeHon 14

C Assignment

•  Basic assignment statement is:
 Location = expression
•  f=a*x+b

*

+

a x
b

f

Penn ESE532 Spring 2017 -- DeHon 15

Straight-line code

•  a sequence of assignments
•  What does this mean?

g=a*x;
h=b+g;
i=h*x;
j=i+c;

b c

*

a x

g
+ h

* i
+

j Penn ESE532 Spring 2017 -- DeHon 16

Variable Reuse
•  Variables (locations) define flow

between computations
•  Locations (variables) are reusable

t=a*x;
r=t*x;
t=b*x;
r=r+t;
r=r+c;

Penn ESE532 Spring 2017 -- DeHon 17

Variable Reuse
•  Variables (locations) define flow between

computations
•  Locations (variables) are reusable

t=a*x; t=a*x;
r=t*x; r=t*x;
t=b*x; t=b*x;
r=r+t; r=r+t;
r=r+c; r=r+c;

•  Sequential assignment semantics tell us
which definition goes with which use.
–  Use gets most recent preceding definition.

Penn ESE532 Spring 2017 -- DeHon 18

Dataflow

•  Can turn sequential
assignments into
dataflow graph through
def!use connections
t=a*x; t=a*x;
r=t*x; r=t*x;
t=b*x; t=b*x;
r=r+t; r=r+t;
r=r+c; r=r+c;

* *

*

+

+

a x b c

4

Penn ESE532 Spring 2017 -- DeHon 19

Dataflow Height

•  t=a*x; t=a*x;
r=t*x; r=t*x;
t=b*x; t=b*x;
r=r+t; r=r+t;
r=r+c; r=r+c;

•  Height (delay) of DF
graph may be less than #
sequential instructions.

* *

*

+

+

a x b c

Penn ESE532 Spring 2017 -- DeHon 20

Lecture Checkpoint

•  Happy with
– Straight-line code
– Variables

•  Graph for preclass f

•  Next topic: Memory

Penn ESE532 Spring 2017 -- DeHon 21

C Memory Model

•  One big linear address
space of locations

•  Most recent definition to
location is value

•  Sequential flow of
statements

000
001
002

005
006
007
008
009
010
011

004 Addr

New value

Current value

Penn ESE532 Spring 2017 -- DeHon 22

C Memory Operations

Read/Use
•  a=*p;
•  a=p[0]
•  a=p[c*10+d]

Write/Def
•  *p=2*a+b;
•  p[0]=23;
•  p[c*10+d]=a*x+b;

Penn ESE532 Spring 2017 -- DeHon 23

Memory Operation Challenge

•  Memory is just a set of location
•  But memory expressions can refer to

variable locations
– Does *q and *p refer to same location?
– p[0] and p[c*10+d]?
– *p and q[c*10+d]?
– p[f(a)] and p[g(b)] ?

Penn ESE532 Spring 2017 -- DeHon 24

Pitfall

•  P[i]=23
•  r=10+P[i]
•  P[j]=17
•  s=P[j]*12

•  Value of r and s?

•  Could do:
 P[i]=23; P[j]=17;

 r=10+P[i]; s=P[j]*12

….unless i==j
Value of r and s?

5

Penn ESE532 Spring 2017 -- DeHon 25

C Pointer Pitfalls

•  *p=23
•  r=10+*p;
•  *q=17
•  s=*q*12;

•  Similar limit if p==q

Penn ESE532 Spring 2017 -- DeHon 26

C Memory/Pointer
Sequentialization

•  Must preserve ordering of memory
operations
– A read cannot be moved before write to

memory which may redefine the location of
the read
•  Conservative: any write to memory
•  Sophisticated analysis may allow us to prove

independence of read and write
– Writes which may redefine the same

location cannot be reordered

Penn ESE532 Spring 2017 -- DeHon 27

Consequence

•  Expressions and operations through
variables (whose address is never
taken) can be executed at any time
– Just preserve the dataflow

•  Memory assignments must execute in
strict order
–  Ideally: partial order
– Conservatively: strict sequential order of C

Penn ESE532 Spring 2017 -- DeHon 28

Forcing Sequencing

•  Demands we introduce some discipline
for deciding when operations occur
– Could be a FSM
– Could be an explicit dataflow token
– Callahan uses control register

•  Other uses for timing control
– Control
– Variable delay blocks
– Looping

Penn ESE532 Spring 2017 -- DeHon 29

Scheduled Memory Operations

Source: Callahan

Hardware/Parallelism Challenge

•  Can we give enough information to the
compiler to
– allow it to reorder?
– allow to put in separate embedded

memories?
•  Is the compiler smart enough to exploit?

Penn ESE532 Spring 2017 -- DeHon 30

6

Multiple Memories

•  How might we want this to be
implemented using multiple memories?

for(i=0;i<MAX;i++)
C[i]=A[i]*B[i];

Penn ESE532 Spring 2017 -- DeHon 31

Idioms

Hard?
void fun(int *a, int *b, int *c)
for(i=0;i<MAX;i++)

A[i]=A[f(i)];
–  Data-dependent

relationship

Easier
int a[1024], b[1024],

c[1024];
for (i=0;i<MAX;i++)

A[2*i+3]=A[i]+A[i+2];
–  Linear equations, can

potentially solve for
relationship

Penn ESE532 Spring 2017 -- DeHon 32

Memory Allocation?

•  How support malloc() in hardware?

Penn ESE532 Spring 2017 -- DeHon 33

Hardware Memory

•  Typically small, fixed, local memory blocks
•  Reuse memory blocks

– Not allocate new blocks
– Cannot make data-dependent memory sized

blocks
•  Different hardware units ! different local

memories
– move data not pass pointers

Penn ESE532 Spring 2017 -- DeHon 34

Control

Penn ESE532 Spring 2017 -- DeHon 35

Conditions

•  If (cond)
–  DoA

•  Else
–  DoB

•  While (cond)
–  DoBody

•  No longer
straightline code

•  Code selectively
executed

•  Data determines
which computation
to perform

Penn ESE532 Spring 2017 -- DeHon 36

7

Penn ESE532 Spring 2017 -- DeHon 37

Basic Blocks
•  Sequence of operations with

– Single entry point
– Once enter execute all operations in block
– Set of exits at end

 begin:
 x=y;
 y++;
 z=y;
 t=z>20;
 brfalse t, finish
 y=4
finish:
 x=x*y
end:

BB0:
 x=y;
 y++;
 z=y;
 t=z>20
 br(t,BB1,BB2)

BB1:
 y=4;
 br BB2

BB2:
 x=x*y;

Basic Blocks?

Penn ESE532 Spring 2017 -- DeHon 38

Basic Blocks

•  Sequence of operations with
– Single entry point
– Once enter execute all operations in block
– Set of exits at end

•  Can dataflow schedule operations
within a basic block
– As long as preserve memory ordering

Penn ESE532 Spring 2017 -- DeHon 39

Connecting Basic Blocks

•  Connect up basic blocks by routing
control flow token
– May enter from several places
– May leave to one of several places

Penn ESE532 Spring 2017 -- DeHon 40

Connecting Basic Blocks
•  Connect up basic blocks by routing

control flow token
– May enter from several places
– May leave to one of several places

BB0

BB1

BB2

 begin:
 x=y;
 y++;
 z=y;
 t=z>20;
 brfalse t, finish
 y=4
finish:
 x=x*y
end:

BB0:
 x=y;
 y++;
 z=y;
 t=z>20
 br(t,BB1,BB2)

BB1:
 y=4;
 br BB2

BB2:
 x=x*y;

Penn ESE532 Spring 2017 -- DeHon 41

Basic Blocks for if/then/else

Source: Callahan

Penn ESE532 Spring 2017 -- DeHon 42

Loops

sum=0;
for (i=0;i<imax;i++)

sum+=i;
r=sum<<2;

sum=0;
i=0;

i<imax

sum+=i;
i=i+1;

r=sum<<2;

8

Penn ESE532 Spring 2017 -- DeHon 43

Lecture Checkpoint

•  Happy with
– Straight-line code
– Variables
– Memory
– Control

Function Call

•  What do we do with function calls?

Penn ESE532 Spring 2017 -- DeHon 44

Inline

int f(int a, int b)
return(sqrt(a*a+b*b));

for(i=0;i<MAX;i++)
D[i]=f(A[i],B[i]);

•  for(i=0;i<MAX;i++)
 D[i]=sqrt(A[i]*A[i]+B[i]*B[i]);

Penn ESE532 Spring 2017 -- DeHon 45

Treat as data flow

•  Implement function
as an operation

•  Send arguments as
input tokens

•  Get result back as
token

Penn ESE532 Spring 2017 -- DeHon 46

Shared Function

Penn ESE532 Spring 2017 -- DeHon 47

Recursion?

int fib(int x) {
 if ((x==0) || (x==1))
return(1);

 else
return(fib(x-1)+fib(x-
2));

}

•  In general won’t work.
–  Problem?

•  Smart compiler might
be able to turn some
cases into iterative
loop.

•  …but don’t count on it.
–  VivadoHLS will not

Penn ESE532 Spring 2017 -- DeHon 48

9

Penn ESE532 Spring 2017 -- DeHon 49

Satisfied?

•  Q: Satisfied with implementation this is
producing?

Penn ESE532 Spring 2017 -- DeHon 50

Beyond Basic Blocks

•  Basic blocks tend to be limiting
•  Runs of straight-line code are not long
•  For good hardware implementation

– Want more parallelism

Penn ESE532 Spring 2017 -- DeHon 51

Simple Control Flow

•  If (cond) { … } else { …}

•  Assignments become conditional
•  In simplest cases (no memory ops),

can treat as dataflow node

cond

choose

then else

Penn ESE532 Spring 2017 -- DeHon 52

Simple Conditionals

if (a>b)
 c=b*c;
else
 c=a*c;

a>b b*c a*c

c

Penn ESE532 Spring 2017 -- DeHon 53

Simple Conditionals

v=a;
if (b>a)
 v=b;

•  If not assigned, value flows from before
assignment

b>a b a

v

Penn ESE532 Spring 2017 -- DeHon 54

Simple Conditionals
max=a;
min=a;
if (a>b)
 {min=b;
 c=1;}
else
 {max=b;
 c=0;}
•  May (re)define many values on each branch.

a>b b a

min

1 0

max c

10

Preclass G

•  Finish drawing graph for preclass g

Penn ESE532 Spring 2017 -- DeHon 55 Penn ESE532 Spring 2017 -- DeHon 56

Recall: Basic Blocks
for if/then/else

Source: Callahan

Mux Converted

if (a>10)
 a++;
else;
 a—
x=a^0x07

Penn ESE532 Spring 2017 -- DeHon 57

Height Reduction

•  Mux converted version has shorter path
(lower latency)

•  Why?

Penn ESE532 Spring 2017 -- DeHon 58

Height Reduction

•  Mux converted version has shorter path
(lower latency)

•  Can execute condition in parallel with
then and else clauses

Penn ESE532 Spring 2017 -- DeHon 59

Mux Conversion and Memory

•  What might go wrong if we mux-
converted the following:

•  If (cond)
– *a=0

•  Else
– *b=0

Penn ESE532 Spring 2017 -- DeHon 60

11

Mux Conversion and Memory

•  What might go wrong if we mux-
converted the following:

•  If (cond)
– *a=0

•  Else
– *b=0

•  Don’t want memory operations in non-
taken branch to occur.

Penn ESE532 Spring 2017 -- DeHon 61

Mux Conversion and Memory

•  If (cond)
– *a=0

•  Else
– *b=0

•  Don’t want memory operations in non-taken
branch to occur.

•  Conclude: cannot mux-convert blocks with
memory operations (without additional care)

Penn ESE532 Spring 2017 -- DeHon 62

Penn ESE532 Spring 2017 -- DeHon 63

Hyperblocks

•  Can convert if/then/else into dataflow
–  If/mux-conversion

•  Hyperblock
– Single entry point
– No internal branches
–  Internal control flow provided by mux

conversion
– May exit at multiple points

a>b b*c a*c

c

Penn ESE532 Spring 2017 -- DeHon 64

Basic Blocks ! Hyperblock

Source: Callahan

Penn ESE532 Spring 2017 -- DeHon 65

Hyperblock Benefits

•  More code ! typically more parallelism
– Shorter critical path

•  Optimization opportunities
– Reduce work in common flow path
– Move logic for uncommon case out of path

•  Makes smaller faster

Penn ESE532 Spring 2017 -- DeHon 66

Common Case Height Reduction

Source: Callahan

12

Penn ESE532 Spring 2017 -- DeHon 67

Common-Case Flow Optimization

Source: Callahan
Penn ESE532 Spring 2017 -- DeHon 68

Optimizations
•  Constant propagation: a=10; b=c[a];
•  Copy propagation: a=b; c=a+d; ! c=b+d;
•  Constant folding: c[10*10+4]; ! c[104];
•  Identity Simplification: c=1*a+0; ! c=a;
•  Strength Reduction: c=b*2; ! c=b<<1;
•  Dead code elimination
•  Common Subexpression Elimination:

–  C[x*100+y]=A[x*100+y]+B[x*100+y]
–  t=x*100+y; C[t]=A[t]+B[t];

•  Operator sizing: for (i=0; i<100; i++) b[i]=(a&0xff+i);

Penn ESE532 Spring 2017 -- DeHon 69

Additional Concerns?
What are we still not satisfied with?
•  Parallelism in hyperblock

–  Especially if memory sequentialized
•  Disambiguate memories?
•  Allow multiple memory banks?

•  Only one hyperblock active at a time
–  Share hardware between blocks?

•  Data only used from one side of mux
–  Share hardware between sides?

•  Most logic in hyperblock idle?
–  Couldn’t we pipeline execution?

Penn ESE532 Spring 2017 -- DeHon 70

Pipelining

for (i=0;i<MAX;i++)
o[i]=(a*x[i]+b)*x[i]+c;

•  If know memory
operations
independent

i<MAX

*

+

*

+

a

b

c

+ read

write

o

x i

Unrolling

•  Put several (all?)
executions of loop
into straight-line
code in the body.

for (i=0;i<MAX;i++)
o[i]=(a*x[i]+b)*x[i]+c;

for (i=0;i<MAX;i+=2)
o[i]=(a*x[i]+b)*x[i]+c;
o[i+1]=(a*x[i+1]+b)*x[i+1]+c;

Penn ESE532 Spring 2017 -- DeHon 71

Unrolling

•  If MAX=4:
o[0]=(a*x[0]+b)*x[0]+c;
o[1]=(a*x[1]+b)*x[1]+c;
o[2]=(a*x[2]+b)*x[2]+c;
o[3]=(a*x[3]+b)*x[3]+c;

for (i=0;i<MAX;i++)
o[i]=(a*x[i]+b)*x[i]+c;

for (i=0;i<MAX;i+=2)
o[i]=(a*x[i]+b)*x[i]+c;
o[i+1]=(a*x[i+1]+b)*x[i+1]+c;

Penn ESE532 Spring 2017 -- DeHon 72

13

Unrolling

•  If MAX=4:
o[0]=(a*x[0]+b)*x[0]+c;
o[1]=(a*x[1]+b)*x[1]+c;
o[2]=(a*x[2]+b)*x[2]+c;
o[3]=(a*x[3]+b)*x[3]+c;

Benefits?

for (i=0;i<MAX;i++)
o[i]=(a*x[i]+b)*x[i]+c;

for (i=0;i<MAX;i+=2)
o[i]=(a*x[i]+b)*x[i]+c;
o[i+1]=(a*x[i+1]+b)*x[i+1]+c;

Penn ESE532 Spring 2017 -- DeHon 73

Unrolling

•  If MAX=4:
o[0]=(a*x[0]+b)*x[0]+c;
o[1]=(a*x[1]+b)*x[1]+c;
o[2]=(a*x[2]+b)*x[2]+c;
o[3]=(a*x[3]+b)*x[3]+c;

Create larger basic block.
More scheduling freedom.
More parallelism.

for (i=0;i<MAX;i++)
o[i]=(a*x[i]+b)*x[i]+c;

for (i=0;i<MAX;i+=2)
o[i]=(a*x[i]+b)*x[i]+c;
o[i+1]=(a*x[i+1]+b)*x[i+1]+c;

Penn ESE532 Spring 2017 -- DeHon 74

Unroll

•  Vivado HLS has pragmas for unrolling
•  UG901: Vivado HLS User’s Guide

– P180—229 for optimization and directives
•  #pragma HLS UNROLL factor=…

Penn ESE532 Spring 2017 -- DeHon 75 Penn ESE532 Spring 2017 -- DeHon 76

Flow Review

Penn ESE532 Spring 2017 -- DeHon 77

Summary
•  Language (here C) defines meaning of

operations
•  Dataflow connection of computations
•  Sequential precedents constraints to preserve
•  Create basic blocks
•  Link together
•  Optimize

– Merge into hyperblocks with if-conversion
– Pipeline, unroll

•  Result is dataflow graph
–  (can schedule to registers and gates)

Penn ESE532 Spring 2017 -- DeHon 78

Big Ideas:
•  C (or any programming language)

specifies a computation
•  Can describe spatial computation

– Has some capabilities that don’t make
sense in hardware
•  Shared memory pool, malloc, recursion

– Watch for unintended sequentialization
•  C for spatial coded differently from C for

processor
– …but can still run on processor

14

Penn ESE532 Spring 2017 -- DeHon 79

Admin

•  Reading or Monday on Web
•  HW5 due Friday

