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ESE532: 
System-on-a-Chip Architecture 

Day 11:  February 20, 2017 
Real Time 

Penn ESE532 Spring 2017 -- DeHon 2 

Today 
Real Time 
•  Demands 
•  Challenges 

– Algorithms 
– Architecture 

•  Analysis 
•  Scheduling 

Message 
•  Real-Time applications demand 

different discipline from best-effort tasks 
•  Look more like synchronous circuits 
•  Can sequentialize like processor 

– But must avoid/rethink typical processor 
common-case optimizations 
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Real Time Tasks 

•  What applications demand real-time 
computing tasks? 
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Real-Time Tasks 

•  Human consumed media: 
– video, audio, games, UI, graphics 

•  Control 
– Anti-lock brakes, cruise-control, auto-pilot, 

UAV, self-driving car, industrial automation 
•  Stock trading 
•  Network traffic handling 
•  Crypto (avoid information leak)  
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Real Time Guarantees 

•  What guarantees might we want for 
real-time tasks? 
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Real-Time Guarantees 

•  Attention/processing within fixed interval 
– Sample new value every XX ms 
– Produce new frame every 30 ms 

•  Bounded response time 
– Respond to keypress within 20 ms 
– Detect object within 100 ms 
– Return search results within 200 ms 
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Synchronous Circuit Model 
•  A simple synchronous circuit is a good 

“model” for real-time task 
– Run at fixed clock rate 
– Take input every cycle 
– Produce output every cycle 
– Complete computation between input and 

output 
– Designed to run at fixed-frequency 

•  Critical path meets frequency requirement 
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Preclass 1 

•  How implement spatial pipeline? 
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Historically 

•  Real-Time concerns grew up in EE 
– Because an analog circuit was the only 

way could meet frequency demands 
– …later a dedicated digital circuit… 

•  Where worried about 
– Signal processing, video, control, … 
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Technological Change 

•  Why not be satisfied with this answer 
today? 
– For real-time task need dedicated 

synchronous circuit? 
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Performance Scaling 
•  As circuit speeds increased 

– Can meet real-time performance demands 
with heavy sequentialization 

•  Circuit and processor clocks  
–  from MHz to GHz 

•  Many real-time task rates unchanged 
– 44KHz audio, 33 frames/second video 

•  Even 100MHz processor 
– Can implement audio in a small fraction of 

its computational throughput capacity 
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HW/SW Co-Design 

•  Computer Engineers – know can 
implement anything as hardware or 
software 

•  Want freedom to move between 
hardware and software to meet 
requirements 
– Performance, costs, energy 
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Real-Time Challenge 

•  Meet real-time demands / guarantees 
– Economically using programmable 

architectures 
•  Sequentialize and share resources with 

deterministic, guaranteed timing 
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Preclass 2 
•  Time for loop iteration case (a)? 
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Preclass 2 Processor 

Penn ESE532 Spring 2017 -- DeHon 16 

Preclass 2 

•  Time for loop iteration case (b)? 
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Data-dependent hazard 

•  Stalls instruction pipeline 
– Only when data needed before computed 
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Observe 

•  Instructions on “General Purpose” 
processors take variable number of 
cycles 
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Preclass 3 

•  How many cycles? 
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Preclass 3 

•  How many cycles? 
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Observe 

•  Data-dependent branching, looping 
– Means variable time for operations 
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Two Challenges 

1.  Architecture – Hardware have variable 
(data-dependent) delay 
– Esp. for General-Purpose processors 

•  Instructions take different number of cycles 

2.  Algorithm – computational specification 
have variable (data-dependent) 
operations 
– Different number of instructions 
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Algorithm 

•  What programming constructs are data-
dependent (variable delay)? 
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Programming Constructs 

•  Conditionals: if/then/else 
•  Loops without compile-time determined 

bounds 
– While with termination expressions 
– For with data-dependent bounds 

•  Recursion 
•  Hash tables, memoization 
•  Interrupts 

–  I/O events, time-slice 
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Programming Constructs 

•  Dynamic Dataflow 
– Variable rates 
– Switch/select operators 
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…like Hardware 

•  Many problematic constructs similar to C/
Programming-Language constructs need 
to avoid for hardware 
– Dynamic allocation (malloc) 
– Recursive functions 
– Loops without determined bounds 
– Mux-conversion/predications for if/then/else 
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Architecture 

•  What processor constructs are variable 
delay? 
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Processor Variable Delay 
•  Data hazards 
•  Caches 
•  Data-dependent branching / branch 

delays 
•  Speculative issue 

– Out-of-Order, branch prediction 
•  Dynamic arbitration for shared 

resources 
– Bus, I/O, Crossbar output, memory, … 
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Cache Predictable? 

•  Is an element in or out of cache? 
– Accessed before? 
– Had an address conflict? 
– Depend on access pattern 

•  If shared 
– Did someone else write it? 
– Depends on everything else sharing  
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Hardware Architecture 

•  Same “optimizations” can cause 
variable delay even in dedicated 
hardware data path 
– Caches 
– Common-case optimizations 
– Pipeline stalls 
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What can we do? 

•  Explicitly managed memory 
•  Fixed-delay pipelines 

– Scheduled 
– Multi-threaded 

•  Deadlines 
•  Offline-scheduled resource sharing 
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Explicitly Managed Memory 

•  Make memory hierarchy visible 
– Use Scratchpad memories instead of caches 
– E.g. local memory in HW5 

•  Explicitly move data between memories 
– E.g. DMA into OCM, movement into local 

memory 
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Explicitly Managed Memory 
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Fixed Delays (1) 

•  Drop dynamic data hazards, branch 
speculation 

•  Data becomes available after a 
predictable time 

•  Branches take effect at a fixed time 
– Likely delayed 

•  Schedule to delays to get correct data 
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Fixed Delay Example 

•  Branches occur 
–  1 cycle later (uncond) 
–  3 cycles later  

•  Non-FP data 
–  Available on 2nd instr 

•  FP data 
–  Available on 6th instr 
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Preclass 4 

•  Where 2(b) loop code not work? 
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Preclass 4 

•  How need to fix? 
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Fixed-Delay (2) 
•  Drop dynamic data hazards, branch 

speculation 
•  Pipeline processor 
•  But only feed one instruction per thread 

through processor at time 
– Each instruction completes before next 

issues (no dependencies) 
•  Use pipeline to issue from multiple 

threads 
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Multithreaded Pipeline 

•  Only one instruction 
per thread in 
pipeline 

•  Looks like 
PIPEDEPTH slower 
processors 

•  No interlock/bypass 
–  Smaller control 
–  Faster cycle? 
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Multithreaded Pipeline 
•  Can run multiple threads 
•  Non-real-time threads can share 
•  Timing of threads not impact each other 
•  Non-real-time threads take variable time 

– Not interfere with real-time thread slots 
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Deadline Instruction 
•  Set a hardware counter for thread 
•  Demand counter reach 0 before allowed 

to continue 
•  Orderly way to tolerate variable 

instructions in algorithm 
•  Model: fixed rate of attention 

– Stall if get there early 
– Similar to flip-flop on a logic path  

•  Wait for clock edge to change value 

•  Model: fixed-time 
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Offline Schedule Resource 
Sharing 

•  Don’t arbitrate 
•  Decide up-front when each shared 

resource can be used by each thread or 
processor 
– Simple fixed schedule 
– Detailed Schedule 

•  What 
– Memory bank, bus, I/O, network link, … 
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Time-Multiplexed Bus 
Fixed by hardware master 
•  4 masters share a bus 
•  Each master gets to 

make a request on the 
bus every 4th cycle 
–  If doesn’t use it, goes idle 
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Time Multiplexed Bus 
•  Regular schedule 
•  Fixed bus slot schedule of length N > 

masters 
–  (probably a multiple) 

•  Assign owner for each slot 
– Can assign more slots to one  

•  E.g. N=8, for 4 masters 
– Schedule (1 2 1 3 1 2 1 4) 
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Fully Scheduled 

•  At extreme, fully schedule which tasks 
gets resource on each cycle 
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Fully Scheduled 

•  At extreme, fully schedule which tasks 
gets resource on each cycle 

•  Sensible if all master’s sharing resource 
are also fully scheduled, running in lock-
step 

•  Think of instruction field for bus 
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Fully Scheduled (before instr) 

•   
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Fully Scheduled 
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SoC Opportunity 

•  Can choose which resources are 
shared 

•  Can dedicate resources to tasks 
•  Isolate real-time tasks/portions of tasks 

from best-effort 
– Separate hardware/processors 
– Separate memories, network 
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Different Goals 

Real Time 
•  Willing to recompile to 

new hardware 
•  Want time on 

hardware predictable 
•  Willing to schedule for 

delays in particular 
hardware 

General Purpose 
•  ISA fixed 
•  Want to run same 

assembly on different 
implementations 

•  Tolerate different 
delays for different 
hardware 

•  Run faster on newer, 
larger implementations 
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WCET 
•  WCET – Worst-Case Execution Time 
•  Analysis when working with algorithms and 

architectures with data-dependent delay 
– Need to meet real time 
– Calculate the worst-case runtime of a task 

•  Like calculating the critical path (but harder) 
•  Worst-case delay of instructions 
•  Worst-case path through code 
•  Worst-case # loop iterations 
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Big Ideas: 
•  Real-Time applications demand 

different discipline from best-effort tasks 
•  Look more like synchronous circuits and 

hardware discipline 
•  Can sequentialize like processor 

– But must avoid/rethink typical processor 
common-case optimizations 

– Offline calculate static schedule for 
computation and sharing 
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Admin 
•  Reading for Monday on Web 
•  No lecture Wednesday 
•  No lab/office hours this week 

– Use piazza 
•  HW6 two week assignment (No HW7) 

– Recommend do base part (3,4) by Friday 
– Can finish (5) by following Friday 

•  Exam next Wednesday 


