ESE532:
System-on-a-Chip Architecture

Day 11: February 20, 2017
Real Time

Penn ESE532 Spring 2017 -- DeHon

#Penn,

Today

Real Time

* Demands

» Challenges
— Algorithms
— Architecture

* Analysis
» Scheduling

Penn ESE532 Spring 2017 -- DeHon

Message
» Real-Time applications demand
different discipline from best-effort tasks
* Look more like synchronous circuits

» Can sequentialize like processor

— But must avoid/rethink typical processor
common-case optimizations

Penn ESE532 Spring 2017 - DeHon 3

Real Time Tasks

» What applications demand real-time
computing tasks?

Penn ESE532 Spring 2017 -- DeHon

Real-Time Tasks

¢ Human consumed media:
—video, audio, games, Ul, graphics
¢ Control

— Anti-lock brakes, cruise-control, auto-pilot,
UAV, self-driving car, industrial automation

» Stock trading
* Network traffic handling
* Crypto (avoid information leak)

Penn ESE532 Spring 2017 - DeHon 5

Real Time Guarantees

* What guarantees might we want for
real-time tasks?

Penn ESES532 Spring 2017 -- DeHon

Real-Time Guarantees

« Attention/processing within fixed interval
— Sample new value every XX ms
— Produce new frame every 30 ms
» Bounded response time
— Respond to keypress within 20 ms
— Detect object within 100 ms
— Return search results within 200 ms

Penn ESE532 Spring 2017 - DeHon

Preclass 1

* How implement spatial pipeline?

all
cll

bf]

float a[MAX], b[MAX], c[MAX], d;
// stuff to load/define a, b, d ...
for (i=0;i<MAX;i++) c[il=(al[il+b[il)*d;

Penn ESE532 Spring 2017 -- DeHon

address counter

maybe an outer loop

Penn

Synchronous Circuit Model

» A simple synchronous circuit is a good
“‘model” for real-time task
— Run at fixed clock rate
— Take input every cycle
— Produce output every cycle
— Complete computation between input and
output
— Designed to run at fixed-frequency
« Critical path meets frequency requirement

ESE532 Spring 2017 - DeHon

Technological Change

* Why not be satisfied with this answer
today?
— For real-time task need dedicated
synchronous circuit?

Penn ESE532 Spring 2017 - DeHon

1

Historically

* Real-Time concerns grew up in EE

— Because an analog circuit was the only
way could meet frequency demands

—...later a dedicated digital circuit...

* Where worried about
— Signal processing, video, control, ...

Penn ESE532 Spring 2017 -- DeHon

Performance Scaling

As circuit speeds increased

— Can meet real-time performance demands
with heavy sequentialization

« Circuit and processor clocks
— from MHz to GHz

* Many real-time task rates unchanged
— 44KHz audio, 33 frames/second video

* Even 100MHz processor

— Can implement audio in a small fraction of
its computational throughput capacity
7 -- DeHon

Penn ESE532 Spring 2017 -- D

HW/SW Co-Design

» Computer Engineers — know can
implement anything as hardware or
software

* Want freedom to move between
hardware and software to meet
requirements
— Performance, costs, energy

Real-Time Challenge

» Meet real-time demands / guarantees
— Economically using programmable
architectures
» Sequentialize and share resources with
deterministic, guaranteed timing

Penn ESE532 Spring 2017 -- DeHon 13
Preclass 2
» Time for loop iteration case (a)?
top: bzero r4, exit
14 f1, r1 // fi<-*r1 (read ali])
1d f2, r2 // £2<-*r2 (read b[il)
fpadd £3,f1,f2 // £3<-f1+f2 (floating-point)
fpmul £5,£3,f4 // £5<-f3*f4 (floating-point)
st £5, r3 // *r3<-f5 (write c[i])
subi r4,#1,r4 // r4<-r4-1 (decrement i)
addi ri,#4,r1 // ri<-ri+4 (update a ptr)
addi r2,#4,r2 // r2<-r2+4 (update b ptr)
addi r3,#4,r3 // r3<-ri+4 (update c ptr)
b top
exit:
Penn ESE532 Spring 2017 -- DeHon 15

Penn ESE532 Spring 2017 -- DeHon 14
Preclass 2 Processor
Penn ESE532 Spring 2017 -- DeHon 16

Preclass 2

» Time for loop iteration case (b)?

top: bzero r4, exit
1d f1, r1 // fi<—*r1 (read alil)
1d £f2, r2 // £2<-*r2 (read b[il)
fpadd £6,f1,f2 // £6<-f1+f2 (floating-point) ** different **
fpmul £5,£3,f4 // £5<-£3%f4 (floating-point)
subi r4,#1,r4 // r4<-r4-1 (decrement i)
addi ri1,#4,r1 // ri<-ri+4 (update a ptr)
addi r2,#4,r2 // r2<-r2+4 (update b ptr)
addi r3,#4,r3 // r3<-ri+4 (update c ptr)
mv £3, f6 //f3 <- 16
st £5, r3 // *r3<-f5 (uwrite c[il)
b top

% new **

exit:

Penn ESES532 Spring 2017 -- DeHon

** different place *x

Data-dependent hazard

« Stalls instruction pipeline
— Only when data needed before computed

Penn ESES532 Spring 2017 -- DeHon

Observe

* Instructions on “General Purpose”
processors take variable number of

cycles
Penn ESE532 Spring 2017 -- DeHon 19
Preclass 3
* How many cycles?

sum=0;

for (;b!=0;b=b>>1) {
if (b%2==1)

sum+=a;

a=a<<1;

}

Penn ESE532 Spring 2017 -- DeHon 21

Two Challenges

1. Architecture — Hardware have variable
(data-dependent) delay
— Esp. for General-Purpose processors

« Instructions take different number of cycles

2. Algorithm — computational specification
have variable (data-dependent)
operations
— Different number of instructions

Penn ESES532 Spring 2017 -- DeHon

Preclass 3

* How many cycles?

sum=0;

for (i=0;i<32;i++) {
sum+=(0-(b%2)) & a;
b=b>>1;
a=a<<1;

}

Penn ESE532 Spring 2017 -- DeHon

20

Observe

» Data-dependent branching, looping
— Means variable time for operations

23

Penn ESE532 Spring 2017 -- DeHon

22

Algorithm

* What programming constructs are data-
dependent (variable delay)?

Penn ESES532 Spring 2017 -- DeHon

24

Programming Constructs

Conditionals: if/then/else

Loops without compile-time determined
bounds

— While with termination expressions

— For with data-dependent bounds
Recursion

Hash tables, memoization

Interrupts

—1/O events, time-slice

j 2017 -- DeHon

25

...like Hardware

* Many problematic constructs similar to C/
Programming-Language constructs need
to avoid for hardware
— Dynamic allocation (malloc)

— Recursive functions
— Loops without determined bounds
— Mux-conversion/predications for if/then/else

Penn ESE 17 - Deo 27
Processor Variable Delay
» Data hazards
» Caches
» Data-dependent branching / branch
delays
» Speculative issue
— Out-of-Order, branch prediction
* Dynamic arbitration for shared
resources
—Bus, I/0, Crossbar output, memory, ...
Penn ESE532 Spring 2017 - DeHon 29

Programming Constructs

* Dynamic Dataflow
— Variable rates
— Switch/select operators

26

Architecture

» What processor constructs are variable
delay?

28

Cache Predictable?

* |s an element in or out of cache?
— Accessed before?
—Had an address conflict?
— Depend on access pattern
* |If shared
— Did someone else write it?
— Depends on everything else sharing

Penn ESE532 Spring 2017 - DeHon

30

Hardware Architecture

.

Same “optimizations” can cause
variable delay even in dedicated
hardware data path

— Caches

— Common-case optimizations

— Pipeline stalls

31

Explicitly Managed Memory

* Make memory hierarchy visible
— Use Scratchpad memories instead of caches
— E.g. local memory in HW5

» Explicitly move data between memories

— E.g. DMA into OCM, movement into local
memory

33

What can we do?

» Explicitly managed memory
» Fixed-delay pipelines
— Scheduled
— Multi-threaded
» Deadlines
+ Offline-scheduled resource sharing

Explicitly Managed Memory

1 cycle
small memory

20 cycles
Large Memory
5 cycles
Medium
Memory
Penn ESE! DeH 34

Fixed Delays (1)

» Drop dynamic data hazards, branch
speculation

« Data becomes available after a
predictable time

« Branches take effect at a fixed time
— Likely delayed

» Schedule to delays to get correct data

Penn ESE532 Spring 2017 - DeHon

35

Fixed Delay Example

* Branches occur
— 1 cycle later (uncond)
— 3 cycles later
* Non-FP data
— Available on 2" instr
* FP data
— Available on 6 instr

Penn ESES532 Spring 2017 -- DeHon

36

Preclass 4

* Where 2(b) loop code not work?

top: bzero r4, exit
1d f1, r1 // fi1<-xr1 (read alil)
1d £2, r2 // f£2<-*r2 (read b[il)
fpadd £6,f1,f2 // £6<-f1+f2 (floating-point) ** different **
fpmul £5,f3,f4 // £5<-f3*f4 (floating-point)
subi r4,#1,r4 // r4<-r4-1 (decrement i)
addi r1,#4,r1 // ri<-ri+4 (update a ptr)
addi r2,#4,r2 // r2<-r2+4 (update b ptr)
addi r3,#4,r3 // r3<-ri+4 (update c ptr)
nv £3, f6 //£3 <- f6
st £5, r3 // *r3<-f5 (urite c[il)
b top

*% new **

exit:

Penn ESE532 Spring 2017 -- DeHon

** different place *x

37

Preclass 4

* How need to fix?

top: bzero r4, exit
1d f1, r1 // fi1<-xr1 (read alil)
1d £2, r2 // f£2<-*r2 (read b[il)
fpadd £6,f1,f2 // £6<-f1+f2 (floating-point) »** different **
fpmul £5,f3,f4 // £5<-f3*f4 (floating-point)
subi r4,#1,r4 // r4<-r4-1 (decrement i)
addi r1,#4,r1 // ri<-ri+4 (update a ptr)
addi r2,#4,r2 // r2<-r2+4 (update b ptr)
addi r3,#4,r3 // r3<-ri+4 (update c ptr)
nv £3, f6 //£3 <- f6
st £5, r3 // *r3<-f5 (urite c[il)
b top

*% new **

exit:

SE532 Spring 2017 -- DeHon

** different place *x

38

Fixed-Delay (2)

* Drop dynamic data hazards, branch
speculation

* Pipeline processor

* But only feed one instruction per thread
through processor at time
— Each instruction completes before next

issues (no dependencies)

» Use pipeline to issue from multiple
threads

or, throughput, not latency

on

39

Multithreaded Pipeline

* Only one instruction
per thread in
pipeline

» Looks like
PIPEDEPTH slower
processors

* No interlock/bypass
— Smaller control
— Faster cycle?

Penn ESE532 S

g 2017 -- DeHon

40

Multithreaded Pipeline

» Can run multiple threads
* Non-real-time threads can share
+ Timing of threads not impact each other

* Non-real-time threads take variable time
— Not interfere with real-time thread slots

Penn ESES532 Spring 2017 -- DeHon

41

Deadline Instruction

» Set a hardware counter for thread
» Demand counter reach 0 before allowed
to continue
+ Orderly way to tolerate variable
instructions in algorithm
* Model: fixed rate of attention
— Stall if get there early
— Similar to flip-flop on a logic path
» Wait for clock edge to change value

* Model: fixed-time

Penn ESES532 Spring 2017 -- DeHon

42

Offline Schedule Resource
Sharing

Don't arbitrate

Decide up-front when each shared
resource can be used by each thread or
processor

— Simple fixed schedule

— Detailed Schedule

* What

—Memory bank, bus, I/O, network link, ...

.

Penn ESE532 Spring 2017 -- DeHon

43

Time-Multiplexed Bus
Fixed by hardware master
+ 4 masters share a bus n”@
» Each master gets to
make a request on the E—:—@

bus every 4t cycle E *[
— If doesn’t use it, goes idle

[P1[P2]P3]P4[P1[P2]P3[P4[P1[P2[P3[P4]

Time — =

Penn ESE532 Spring 2017 -- DeHon 44

Time Multiplexed Bus

* Regular schedule
 Fixed bus slot schedule of length N >
masters
— (probably a multiple)
» Assign owner for each slot
— Can assign more slots to one
» E.g. N=8, for 4 masters
—Schedule (12131214)

Penn ESE532 Spring 2017 -- DeHon

45

Fully Scheduled

» At extreme, fully schedule which tasks
gets resource on each cycle

Mem J

Bus
Imem

Penn ESE532 Spring 2017 - DeHon 46

Fully Scheduled

» At extreme, fully schedule which tasks
gets resource on each cycle

» Sensible if all master’s sharing resource
are also fully scheduled, running in lock-
step

¢ Think of instruction field for bus

Penn ESES532 Spring 2017 -- DeHon

47

Fully Scheduled (before instr)

|
B x 2N Xbar

—
(]
—
(=
3
[e]
(&)
£
«©
-
(=2
o
et
o

Instruction Memory

N x B Xbar \

I

Penn ESE532 Spring 2017 -- De

48

Fully Scheduled

—
T - ' B‘x2NXbar
) | o | | IEXaReRIII
c — — | \
3 o gl \%
H i %%
c £z
: KRS
<) © ﬁ# Q ?
o 3
a = 1 1 —
= - N x B Xbar |
- |
Penn ESE532 Spring 2017 -- DeHon 49

SoC Opportunity

» Can choose which resources are
shared

» Can dedicate resources to tasks

* |solate real-time tasks/portions of tasks
from best-effort
— Separate hardware/processors
— Separate memories, network

Penn ESE532 Spring 2017 -- DeHon 50

Different Goals

General Purpose

* ISA fixed

* Want to run same
assembly on different
implementations

+ Tolerate different
delays for different
hardware

Real Time

+ Willing to recompile to
new hardware

+ Want time on
hardware predictable

» Willing to schedule for
delays in particular
hardware

* Run faster on newer,
larger implementations

Penn ESE532 Spring 2017 -- DeHon

51

WCET

« WCET — Worst-Case Execution Time

* Analysis when working with algorithms and
architectures with data-dependent delay
— Need to meet real time
— Calculate the worst-case runtime of a task
« Like calculating the critical path (but harder)
« Worst-case delay of instructions
« Worst-case path through code
» Worst-case # loop iterations

Penn ESE532 Spring 2017 -- DeHon 52

Big Ideas:

Real-Time applications demand

different discipline from best-effort tasks

Look more like synchronous circuits and

hardware discipline

Can sequentialize like processor

— But must avoid/rethink typical processor
common-case optimizations

— Offline calculate static schedule for
computation and sharing

.

Penn ESE532 Spring 2017 - DeHon

53

Admin

Reading for Monday on Web

No lecture Wednesday

No lab/office hours this week

— Use piazza

* HW6 two week assignment (No HW7)
— Recommend do base part (3,4) by Friday
— Can finish (5) by following Friday

Exam next Wednesday

.

Penn ESE532 Spring 2017 - DeHon 54

