
1

Penn ESE532 Spring 2017 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 11: February 20, 2017
Real Time

Penn ESE532 Spring 2017 -- DeHon 2

Today
Real Time
•  Demands
•  Challenges

– Algorithms
– Architecture

•  Analysis
•  Scheduling

Message
•  Real-Time applications demand

different discipline from best-effort tasks
•  Look more like synchronous circuits
•  Can sequentialize like processor

– But must avoid/rethink typical processor
common-case optimizations

Penn ESE532 Spring 2017 -- DeHon 3

Real Time Tasks

•  What applications demand real-time
computing tasks?

Penn ESE532 Spring 2017 -- DeHon 4

Real-Time Tasks

•  Human consumed media:
– video, audio, games, UI, graphics

•  Control
– Anti-lock brakes, cruise-control, auto-pilot,

UAV, self-driving car, industrial automation
•  Stock trading
•  Network traffic handling
•  Crypto (avoid information leak)

Penn ESE532 Spring 2017 -- DeHon 5

Real Time Guarantees

•  What guarantees might we want for
real-time tasks?

Penn ESE532 Spring 2017 -- DeHon 6

2

Real-Time Guarantees

•  Attention/processing within fixed interval
– Sample new value every XX ms
– Produce new frame every 30 ms

•  Bounded response time
– Respond to keypress within 20 ms
– Detect object within 100 ms
– Return search results within 200 ms

Penn ESE532 Spring 2017 -- DeHon 7

Synchronous Circuit Model
•  A simple synchronous circuit is a good

“model” for real-time task
– Run at fixed clock rate
– Take input every cycle
– Produce output every cycle
– Complete computation between input and

output
– Designed to run at fixed-frequency

•  Critical path meets frequency requirement
Penn ESE532 Spring 2017 -- DeHon 8

Preclass 1

•  How implement spatial pipeline?

Penn ESE532 Spring 2017 -- DeHon 9

Historically

•  Real-Time concerns grew up in EE
– Because an analog circuit was the only

way could meet frequency demands
– …later a dedicated digital circuit…

•  Where worried about
– Signal processing, video, control, …

Penn ESE532 Spring 2017 -- DeHon 10

Technological Change

•  Why not be satisfied with this answer
today?
– For real-time task need dedicated

synchronous circuit?

Penn ESE532 Spring 2017 -- DeHon 11

Performance Scaling
•  As circuit speeds increased

– Can meet real-time performance demands
with heavy sequentialization

•  Circuit and processor clocks
–  from MHz to GHz

•  Many real-time task rates unchanged
– 44KHz audio, 33 frames/second video

•  Even 100MHz processor
– Can implement audio in a small fraction of

its computational throughput capacity
Penn ESE532 Spring 2017 -- DeHon 12

3

HW/SW Co-Design

•  Computer Engineers – know can
implement anything as hardware or
software

•  Want freedom to move between
hardware and software to meet
requirements
– Performance, costs, energy

Penn ESE532 Spring 2017 -- DeHon 13

Real-Time Challenge

•  Meet real-time demands / guarantees
– Economically using programmable

architectures
•  Sequentialize and share resources with

deterministic, guaranteed timing

Penn ESE532 Spring 2017 -- DeHon 14

Preclass 2
•  Time for loop iteration case (a)?

Penn ESE532 Spring 2017 -- DeHon 15

Preclass 2 Processor

Penn ESE532 Spring 2017 -- DeHon 16

Preclass 2

•  Time for loop iteration case (b)?

Penn ESE532 Spring 2017 -- DeHon 17

Data-dependent hazard

•  Stalls instruction pipeline
– Only when data needed before computed

Penn ESE532 Spring 2017 -- DeHon 18

4

Observe

•  Instructions on “General Purpose”
processors take variable number of
cycles

Penn ESE532 Spring 2017 -- DeHon 19

Preclass 3

•  How many cycles?

Penn ESE532 Spring 2017 -- DeHon 20

Preclass 3

•  How many cycles?

Penn ESE532 Spring 2017 -- DeHon 21

Observe

•  Data-dependent branching, looping
– Means variable time for operations

Penn ESE532 Spring 2017 -- DeHon 22

Two Challenges

1.  Architecture – Hardware have variable
(data-dependent) delay
– Esp. for General-Purpose processors

•  Instructions take different number of cycles

2.  Algorithm – computational specification
have variable (data-dependent)
operations
– Different number of instructions

Penn ESE532 Spring 2017 -- DeHon 23

Algorithm

•  What programming constructs are data-
dependent (variable delay)?

Penn ESE532 Spring 2017 -- DeHon 24

5

Programming Constructs

•  Conditionals: if/then/else
•  Loops without compile-time determined

bounds
– While with termination expressions
– For with data-dependent bounds

•  Recursion
•  Hash tables, memoization
•  Interrupts

–  I/O events, time-slice
Penn ESE532 Spring 2017 -- DeHon 25

Programming Constructs

•  Dynamic Dataflow
– Variable rates
– Switch/select operators

Penn ESE532 Spring 2017 -- DeHon 26

…like Hardware

•  Many problematic constructs similar to C/
Programming-Language constructs need
to avoid for hardware
– Dynamic allocation (malloc)
– Recursive functions
– Loops without determined bounds
– Mux-conversion/predications for if/then/else

Penn ESE532 Spring 2017 -- DeHon 27

Architecture

•  What processor constructs are variable
delay?

Penn ESE532 Spring 2017 -- DeHon 28

Processor Variable Delay
•  Data hazards
•  Caches
•  Data-dependent branching / branch

delays
•  Speculative issue

– Out-of-Order, branch prediction
•  Dynamic arbitration for shared

resources
– Bus, I/O, Crossbar output, memory, …

Penn ESE532 Spring 2017 -- DeHon 29

Cache Predictable?

•  Is an element in or out of cache?
– Accessed before?
– Had an address conflict?
– Depend on access pattern

•  If shared
– Did someone else write it?
– Depends on everything else sharing

Penn ESE532 Spring 2017 -- DeHon 30

6

Hardware Architecture

•  Same “optimizations” can cause
variable delay even in dedicated
hardware data path
– Caches
– Common-case optimizations
– Pipeline stalls

Penn ESE532 Spring 2017 -- DeHon 31

What can we do?

•  Explicitly managed memory
•  Fixed-delay pipelines

– Scheduled
– Multi-threaded

•  Deadlines
•  Offline-scheduled resource sharing

Penn ESE532 Spring 2017 -- DeHon 32

Explicitly Managed Memory

•  Make memory hierarchy visible
– Use Scratchpad memories instead of caches
– E.g. local memory in HW5

•  Explicitly move data between memories
– E.g. DMA into OCM, movement into local

memory

Penn ESE532 Spring 2017 -- DeHon 33

Explicitly Managed Memory

Penn ESE532 Spring 2017 -- DeHon 34

Fixed Delays (1)

•  Drop dynamic data hazards, branch
speculation

•  Data becomes available after a
predictable time

•  Branches take effect at a fixed time
– Likely delayed

•  Schedule to delays to get correct data

Penn ESE532 Spring 2017 -- DeHon 35

Fixed Delay Example

•  Branches occur
–  1 cycle later (uncond)
–  3 cycles later

•  Non-FP data
–  Available on 2nd instr

•  FP data
–  Available on 6th instr

Penn ESE532 Spring 2017 -- DeHon 36

7

Preclass 4

•  Where 2(b) loop code not work?

Penn ESE532 Spring 2017 -- DeHon 37

Preclass 4

•  How need to fix?

Penn ESE532 Spring 2017 -- DeHon 38

Fixed-Delay (2)
•  Drop dynamic data hazards, branch

speculation
•  Pipeline processor
•  But only feed one instruction per thread

through processor at time
– Each instruction completes before next

issues (no dependencies)
•  Use pipeline to issue from multiple

threads
– For throughput, not latency Penn ESE532 Spring 2017 -- DeHon 39

Multithreaded Pipeline

•  Only one instruction
per thread in
pipeline

•  Looks like
PIPEDEPTH slower
processors

•  No interlock/bypass
–  Smaller control
–  Faster cycle?

Penn ESE532 Spring 2017 -- DeHon 40

Multithreaded Pipeline
•  Can run multiple threads
•  Non-real-time threads can share
•  Timing of threads not impact each other
•  Non-real-time threads take variable time

– Not interfere with real-time thread slots

Penn ESE532 Spring 2017 -- DeHon 41

Deadline Instruction
•  Set a hardware counter for thread
•  Demand counter reach 0 before allowed

to continue
•  Orderly way to tolerate variable

instructions in algorithm
•  Model: fixed rate of attention

– Stall if get there early
– Similar to flip-flop on a logic path

•  Wait for clock edge to change value

•  Model: fixed-time
Penn ESE532 Spring 2017 -- DeHon 42

8

Offline Schedule Resource
Sharing

•  Don’t arbitrate
•  Decide up-front when each shared

resource can be used by each thread or
processor
– Simple fixed schedule
– Detailed Schedule

•  What
– Memory bank, bus, I/O, network link, …

Penn ESE532 Spring 2017 -- DeHon 43

Time-Multiplexed Bus
Fixed by hardware master
•  4 masters share a bus
•  Each master gets to

make a request on the
bus every 4th cycle
–  If doesn’t use it, goes idle

Penn ESE532 Spring 2017 -- DeHon 44

Time Multiplexed Bus
•  Regular schedule
•  Fixed bus slot schedule of length N >

masters
–  (probably a multiple)

•  Assign owner for each slot
– Can assign more slots to one

•  E.g. N=8, for 4 masters
– Schedule (1 2 1 3 1 2 1 4)

Penn ESE532 Spring 2017 -- DeHon 45

Fully Scheduled

•  At extreme, fully schedule which tasks
gets resource on each cycle

Penn ESE532 Spring 2017 -- DeHon 46

Fully Scheduled

•  At extreme, fully schedule which tasks
gets resource on each cycle

•  Sensible if all master’s sharing resource
are also fully scheduled, running in lock-
step

•  Think of instruction field for bus

Penn ESE532 Spring 2017 -- DeHon 47

Fully Scheduled (before instr)

• 

Penn ESE532 Spring 2017 -- DeHon 48

9

Fully Scheduled

Penn ESE532 Spring 2017 -- DeHon 49

SoC Opportunity

•  Can choose which resources are
shared

•  Can dedicate resources to tasks
•  Isolate real-time tasks/portions of tasks

from best-effort
– Separate hardware/processors
– Separate memories, network

Penn ESE532 Spring 2017 -- DeHon 50

Different Goals

Real Time
•  Willing to recompile to

new hardware
•  Want time on

hardware predictable
•  Willing to schedule for

delays in particular
hardware

General Purpose
•  ISA fixed
•  Want to run same

assembly on different
implementations

•  Tolerate different
delays for different
hardware

•  Run faster on newer,
larger implementations

Penn ESE532 Spring 2017 -- DeHon 51

WCET
•  WCET – Worst-Case Execution Time
•  Analysis when working with algorithms and

architectures with data-dependent delay
– Need to meet real time
– Calculate the worst-case runtime of a task

•  Like calculating the critical path (but harder)
•  Worst-case delay of instructions
•  Worst-case path through code
•  Worst-case # loop iterations

Penn ESE532 Spring 2017 -- DeHon 52

Penn ESE532 Spring 2017 -- DeHon 53

Big Ideas:
•  Real-Time applications demand

different discipline from best-effort tasks
•  Look more like synchronous circuits and

hardware discipline
•  Can sequentialize like processor

– But must avoid/rethink typical processor
common-case optimizations

– Offline calculate static schedule for
computation and sharing

Penn ESE532 Spring 2017 -- DeHon 54

Admin
•  Reading for Monday on Web
•  No lecture Wednesday
•  No lab/office hours this week

– Use piazza
•  HW6 two week assignment (No HW7)

– Recommend do base part (3,4) by Friday
– Can finish (5) by following Friday

•  Exam next Wednesday

