
1

Penn ESE532 Spring 2017 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 12: February 27, 2017
Real Time Scheduling

Penn ESE532 Spring 2017 -- DeHon 2

Today
Real Time
•  Synchronous Reactive Model
•  Interrupts

– Polling alternative
– Timer?

•  Resource Scheduling Graphs

Message

•  Scheduling is key to real time
– Analysis
– Guarantees

Penn ESE532 Spring 2017 -- DeHon 3

Synchronous Circuit Model
•  A simple synchronous circuit is a good

“model” for real-time task
– Run at fixed clock rate
– Take input every cycle
– Produce output every cycle
– Complete computation between input and

output
– Designed to run at fixed-frequency

•  Critical path meets frequency requirement
Penn ESE532 Spring 2017 -- DeHon 4

Synchronous Reactive Model

•  Discipline for Real-time tasks
•  Embodies the “synchronous circuit

model”

Penn ESE532 Spring 2017 -- DeHon 5

Synchronous Reactive
•  There is a rate for interaction with external

world (like the clock)
•  Computation scheduled around these clock

ticks (or time-slices)
– Continuously running threads
– Each thread performs action per tick

•  Inputs and outputs processed at this rate
•  Computation can “react” to events

– Reactions finite and processed before next tick
Penn ESE532 Spring 2017 -- DeHon 6

2

Thread Form

while (1) { tick(); }

•  tick() -- yields after doing its work

Penn ESE532 Spring 2017 -- DeHon 7

Thread Model

Penn ESE532 Spring 2017 -- DeHon 8

Tick Rate

•  Driven by application – demands of
external control
– Control loop 100 Hz

•  Robot, airplane, car, manufacturing plant

– Video at 33 fps
– Game with 20ms response
– Router with 1ms packet latency

Penn ESE532 Spring 2017 -- DeHon 9

Tick Rate

•  Multiple rates
– May need master tick least-common

mulitple
•  …and lower freq. events scheduled less

frequently
– E.g. 100Hz control loop at 33Hz video

•  Master at 10ms
•  Schedule video over 3 10ms time-slots

Penn ESE532 Spring 2017 -- DeHon 10

Synchronous Reactive
•  Ideal model

– Per tick reaction (task processing)
instantaneous

•  Separate function from compute time
•  Separate function from technology

– Feature size, processor mapped to
•  Like synchronous circuit

–  If logic correct, works when run clock slow
enough

– Works functionally when change technology
– Then focus on reducing critical path

Penn ESE532 Spring 2017 -- DeHon 11

Synchronous Reactive Timing
•  Once functional,

– need to guarantee all tasks (in all states)
can complete in tick time-slot

– On particular target architecture
•  Identify WCET

– Like critical path in FSM circuit
– Time of task on processor target

Penn ESE532 Spring 2017 -- DeHon 12

3

Preclass 1

•  Time available to process objects?

Penn ESE532 Spring 2017 -- DeHon 13

Preclass 1

Penn ESE532 Spring 2017 -- DeHon 14

•  Worst-case object
processing time?

Preclass 1

•  Maximum number of objects on single
GHz processor?

Penn ESE532 Spring 2017 -- DeHon 15

Synchronous Reactive Timing
•  Once functional,

– need to guarantee all tasks (in all states)
can complete in tick time-slot

– On particular target architecture
•  Identify WCET

– Like critical path in FSM circuit
– Time of task on processor target

•  Schedule onto platform
– Threads onto processor(s)

Penn ESE532 Spring 2017 -- DeHon 16

Threads Mapped to Processor

Penn ESE532 Spring 2017 -- DeHon 17

Platforms

•  Platform 1:
fast processor

•  Platform 2:
many slow
processors

Penn ESE532 Spring 2017 -- DeHon 18

4

Synchronous Reactive Model

•  Discipline for Real-time tasks
•  Embodies the “synchronous circuit model”

– Master clock rate
– Computation decomposed per clock
– Functionality assuming instantaneous

compute
– On platform, guarantee runs fast enough to

complete critical path at “clock” rate

Penn ESE532 Spring 2017 -- DeHon 19

Midterm

Penn ESE532 Spring 2017 -- DeHon 20

Midterm

•  Analysis
–  Bottleneck
–  Amdhal’s Law
–  Computational

requirements
–  Resource Bounds
–  Critical Path
–  Latency/throughput

•  From Code
•  Forms of Parallelism
•  SIMD, hardware

pipeline
•  Map/schedule task

graph to (multiple)
target substrates

•  Memory assignment
and movement

•  Area-time?
Penn ESE532 Spring 2017 -- DeHon 21

Interrupts

Penn ESE532 Spring 2017 -- DeHon 22

Interrupt

•  External event that redirects processor
flow of control

•  Typically forces a thread switch
•  Common for I/O, Timers

–  Indicate a need for attention

Penn ESE532 Spring 2017 -- DeHon 23

Interrupts: Good

•  Allow processor to run some other work
•  Infrequent, irregular task service with

low response service latency
– Low latency, low throughput

Penn ESE532 Spring 2017 -- DeHon 24

5

Interrupts: Bad
•  Time predictability

– Real-time for computing tasks interrupted
•  Processor usage

– Costs time to switch contexts
•  Concurrency management

– Must deal with tasks executing non-
atomically
•  Interleave of interrupted service tasks
•  Perhaps interleave of any task

Penn ESE532 Spring 2017 -- DeHon 25

Polling Discipline

•  Every I/O task is a thread
•  Budget time and rate it needs to run

– E.g. 10,000 cycles every 5ms
– Likely tied to

•  Buffer sizes
•  Response latency

•  Schedule I/O threads as real-time tasks
– Some can be DMA channels

Penn ESE532 Spring 2017 -- DeHon 26

IO Thread

while (1) { process_input(); }

•  Like tick() -- yields after doing its work

Penn ESE532 Spring 2017 -- DeHon 27

Preclass 2

•  Input at 100KB/s
•  30ms time-slot window
•  Size of buffer?
•  100 cycles/byte, GHz processor –

runtime of service routine?
– Fraction of processor capacity?

Penn ESE532 Spring 2017 -- DeHon 28

Scheduling I/O Tasks

Penn ESE532 Spring 2017 -- DeHon 29

Timer Interrupts

•  Bounded-time tasks
– E.g. reactive tasks in real-time
– Task has guarantee to release processor

within time window
– Not need timer interrupts to regain control

from task
–  (Maybe use deadline operations for timer)

Penn ESE532 Spring 2017 -- DeHon 30

6

Timer Interrupts
•  Best effort tasks

– Have no guarantee to finish in bounded
time

– Timer interrupts necessary
•  to allow other threads to run
•  fairness
•  to switch to real-time service tasks

•  Need timer interrupts if need to share
processor with real-time threads
– Easier to segregate real-time and best-

effort threads onto different processors
Penn ESE532 Spring 2017 -- DeHon 31

Greedy Strategy

•  Schedule real-time tasks
– Scheduled based on worst-case, so may

not use all time allocated
•  Run best-effort tasks at end of time-

slice after complete real-time tasks
– Timer-interrupt to recover processor in time

for start of next scheduling time slot
•  (adds complexity)

Penn ESE532 Spring 2017 -- DeHon 32

Resource Scheduling Graphs

Penn ESE532 Spring 2017 -- DeHon 33

Scheduling

•  Useful to think about scheduling a
processor by task usage

•  Useful to budget and co-schedule
required resources
– Bus
– Memory port
– DMA channel

Penn ESE532 Spring 2017 -- DeHon 34

Simple Task Model

•  Task requires
–  Data to be

transferred
–  Local storage state
–  Computational

cycles
–  (Result data to be

transferred)

•  Uses resources
–  Bus/channel to

transfer data
•  (in and out)

–  Space in memory on
accelerator

–  Cycles on accelerator

Penn ESE532 Spring 2017 -- DeHon 35

One Task

Penn ESE532 Spring 2017 -- DeHon 36

P1
P2
Bus
Mem

7

Several Tasks

Penn ESE532 Spring 2017 -- DeHon 37

Reso
urce

0 1 2 3 4 5 6 7 8

P1
P2
Bus
Mem

Resource Schedule Graph
•  Extend as necessary to capture

potentially limiting resources and usage
– Regions in memories
– Memory ports
–  I/O channels

Penn ESE532 Spring 2017 -- DeHon 38

Extended Details

Penn ESE532 Spring 2017 -- DeHon 39

Resou
rce

0 1 2 3 4 5 6 7 8

P1
P1 M0
P1 M1
P2
P2 M0
P2 M1
Bus1
Bus2
OCM
DRAM

Several Tasks

Penn ESE532 Spring 2017 -- DeHon 40

Resou
rce

0 1 2 3 4 5 6 7 8

P1
P1 M0
P1 M1
P2
P2 M0
P2 M1
Bus1
Bus2
OCM
DRAM

Approach

•  Ideal/initial – look at processing
requirements
– Resource bound on processing

•  Look for bottlenecks / limits with Resource
Bounds independently
– Add buses, memories, etc.

•  Plan/schedule with Resource Schedule
Graph

Penn ESE532 Spring 2017 -- DeHon 41

Preclass 3a
•  Resource Bound

– Data movement over bus?
– Compute on 2 processors?
– Compute on 2 processors when processor

must wait while local memory is written?

Penn ESE532 Spring 2017 -- DeHon 42

8

Preclass 3b Schedule

•  Processor wait for data load

Penn ESE532 Spring 2017 -- DeHon 43

Double Buffering

•  Common trick to overlap compute and
communication

•  Reserve two buffers input (output)
•  Alternate buffer use for input
•  Producer fills one buffer while consumer

working from the other
•  Swap between tasks
•  Trade memory for concurrency

Penn ESE532 Spring 2017 -- DeHon 44

Preclass 3c Schedule

•  Double Buffer

Penn ESE532 Spring 2017 -- DeHon 45

Resource Schedule Graphs

•  Useful to plan/visualize resource
sharing and bottlenecks in SoC

•  Supports scheduling
•  Necessary for real-time scheduling

Penn ESE532 Spring 2017 -- DeHon 46

Penn ESE532 Spring 2017 -- DeHon 47

Big Ideas:
•  Scheduling is key to real time

– Analysis, Guarantees
•  Synchronous reactive

– Scheduling worst-case tasks “reactions”
into master time-slice matches rate

•  Schedule I/O with polling threads
– Avoid interrupts

•  Schedule dependent resources
– Buses, memory ports, memory regions…

Penn ESE532 Spring 2017 -- DeHon 48

Admin
•  Exam Wednesday
•  HW6 due Friday
•  <Enjoy Spring Break>

