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ESE532: 
System-on-a-Chip Architecture 

Day 12:  February 27, 2017 
Real Time Scheduling 
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Today 
Real Time 
•  Synchronous Reactive Model 
•  Interrupts 

– Polling alternative 
– Timer? 

•  Resource Scheduling Graphs 

Message 

•  Scheduling is key to real time 
– Analysis 
– Guarantees  
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Synchronous Circuit Model 
•  A simple synchronous circuit is a good 

“model” for real-time task 
– Run at fixed clock rate 
– Take input every cycle 
– Produce output every cycle 
– Complete computation between input and 

output 
– Designed to run at fixed-frequency 

•  Critical path meets frequency requirement 
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Synchronous Reactive Model 

•  Discipline for Real-time tasks 
•  Embodies the “synchronous circuit 

model” 
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Synchronous Reactive 
•  There is a rate for interaction with external 

world (like the clock) 
•  Computation scheduled around these clock 

ticks (or time-slices) 
– Continuously running threads 
– Each thread performs action per tick 

•  Inputs and outputs processed at this rate 
•  Computation can “react” to events 

– Reactions finite and processed before next tick 
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Thread Form 

while (1) { tick(); } 

•  tick() -- yields after doing its work 
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Thread Model 
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Tick Rate 

•  Driven by application – demands of 
external control 
– Control loop 100 Hz 

•  Robot, airplane, car, manufacturing plant 

– Video at 33 fps  
– Game with 20ms response 
– Router with 1ms packet latency 
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Tick Rate 

•  Multiple rates 
– May need master tick least-common 

mulitple 
•  …and lower freq. events scheduled less 

frequently 
– E.g. 100Hz control loop at 33Hz video 

•  Master at 10ms 
•  Schedule video over 3 10ms time-slots 
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Synchronous Reactive 
•  Ideal model 

– Per tick reaction (task processing) 
instantaneous 

•  Separate function from compute time 
•  Separate function from technology 

– Feature size, processor mapped to 
•  Like synchronous circuit 

–  If logic correct, works when run clock slow 
enough 

– Works functionally when change technology 
– Then focus on reducing critical path 
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Synchronous Reactive Timing 
•  Once functional,  

– need to guarantee all tasks (in all states) 
can complete in tick time-slot 

– On particular target architecture 
•  Identify WCET 

– Like critical path in FSM circuit 
– Time of task on processor target 

Penn ESE532 Spring 2017 -- DeHon 12 



3 

Preclass 1 

•  Time available to process objects? 
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Preclass 1 
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•  Worst-case object 
processing time? 

Preclass 1 

•  Maximum number of objects on single 
GHz processor? 
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Synchronous Reactive Timing 
•  Once functional,  

– need to guarantee all tasks (in all states) 
can complete in tick time-slot 

– On particular target architecture 
•  Identify WCET 

– Like critical path in FSM circuit 
– Time of task on processor target 

•  Schedule onto platform  
– Threads onto processor(s) 
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Threads Mapped to Processor 
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Platforms 

•  Platform 1:  
fast processor 

•  Platform 2:  
many slow 
processors 
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Synchronous Reactive Model 

•  Discipline for Real-time tasks 
•  Embodies the “synchronous circuit model” 

– Master clock rate 
– Computation decomposed per clock 
– Functionality assuming instantaneous 

compute 
– On platform, guarantee runs fast enough to 

complete critical path at “clock” rate 

Penn ESE532 Spring 2017 -- DeHon 19 

Midterm 
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Midterm 

•  Analysis 
–  Bottleneck 
–  Amdhal’s Law 
–  Computational 

requirements 
–  Resource Bounds 
–  Critical Path 
–  Latency/throughput 

•  From Code  
•  Forms of Parallelism 
•  SIMD, hardware 

pipeline 
•  Map/schedule task 

graph to (multiple) 
target substrates 

•  Memory assignment 
and movement 

•  Area-time? 
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Interrupts 
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Interrupt 

•  External event that redirects processor 
flow of control 

•  Typically forces a thread switch 
•  Common for I/O, Timers 

–  Indicate a need for attention 
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Interrupts: Good 

•  Allow processor to run some other work 
•  Infrequent, irregular task service with 

low response service latency 
– Low latency, low throughput 
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Interrupts: Bad 
•  Time predictability 

– Real-time for computing tasks interrupted 
•  Processor usage 

– Costs time to switch contexts 
•  Concurrency management 

– Must deal with tasks executing non-
atomically  
•  Interleave of interrupted service tasks 
•  Perhaps interleave of any task 
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Polling Discipline 

•  Every I/O task is a thread 
•  Budget time and rate it needs to run 

– E.g. 10,000 cycles every 5ms 
– Likely tied to  

•  Buffer sizes 
•  Response latency 

•  Schedule I/O threads as real-time tasks 
– Some can be DMA channels 
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IO Thread 

while (1) { process_input(); } 

•  Like tick() -- yields after doing its work 
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Preclass 2 

•  Input at 100KB/s 
•  30ms time-slot window 
•  Size of buffer? 
•  100 cycles/byte, GHz processor – 

runtime of service routine? 
– Fraction of processor capacity? 
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Scheduling I/O Tasks 
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Timer Interrupts 

•  Bounded-time tasks 
– E.g. reactive tasks in real-time 
– Task has guarantee to release processor 

within time window 
– Not need timer interrupts to regain control 

from task 
–  (Maybe use deadline operations for timer) 
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Timer Interrupts 
•  Best effort tasks 

– Have no guarantee to finish in bounded 
time 

– Timer interrupts necessary  
•  to allow other threads to run 
•  fairness 
•  to switch to real-time service tasks 

•  Need timer interrupts if need to share 
processor with real-time threads 
– Easier to segregate real-time and best-

effort threads onto different processors 
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Greedy Strategy 

•  Schedule real-time tasks 
– Scheduled based on worst-case, so may 

not use all time allocated 
•  Run best-effort tasks at end of time-

slice after complete real-time tasks 
– Timer-interrupt to recover processor in time 

for start of next scheduling time slot 
•  (adds complexity) 
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Resource Scheduling Graphs 
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Scheduling 

•  Useful to think about scheduling a 
processor by task usage 

•  Useful to budget and co-schedule 
required resources 
– Bus 
– Memory port 
– DMA channel 
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Simple Task Model 

•  Task requires 
–  Data to be 

transferred 
–  Local storage state 
–  Computational 

cycles 
–  (Result data to be 

transferred) 

•  Uses resources 
–  Bus/channel to 

transfer data 
•  (in and out) 

–  Space in memory on 
accelerator 

–  Cycles on accelerator 
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One Task 
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Several Tasks 
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Resource Schedule Graph 
•  Extend as necessary to capture 

potentially limiting resources and usage 
– Regions in memories 
– Memory ports 
–  I/O channels 
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Extended Details 
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Several Tasks 
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Approach 

•  Ideal/initial – look at processing 
requirements 
– Resource bound on processing 

•  Look for bottlenecks / limits with Resource 
Bounds independently 
– Add buses, memories, etc. 

•  Plan/schedule with Resource Schedule 
Graph 
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Preclass 3a 
•  Resource Bound 

– Data movement over bus? 
– Compute on 2 processors? 
– Compute on 2 processors when processor 

must wait while local memory is written? 
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Preclass 3b Schedule 

•  Processor wait for data load 
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Double Buffering 

•  Common trick to overlap compute and 
communication 

•  Reserve two buffers input (output) 
•  Alternate buffer use for input 
•  Producer fills one buffer while consumer 

working from the other 
•  Swap between tasks 
•  Trade memory for concurrency  
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Preclass 3c Schedule 

•  Double Buffer 
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Resource Schedule Graphs 

•  Useful to plan/visualize resource 
sharing and bottlenecks in SoC 

•  Supports scheduling 
•  Necessary for real-time scheduling 
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Big Ideas: 
•  Scheduling is key to real time 

– Analysis, Guarantees  
•  Synchronous reactive 

– Scheduling worst-case tasks “reactions” 
into master time-slice matches rate 

•  Schedule I/O with polling threads 
– Avoid interrupts 

•  Schedule dependent resources 
– Buses, memory ports, memory regions… 
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Admin 
•  Exam Wednesday 
•  HW6 due Friday 
•  <Enjoy Spring Break> 


