
1

Penn ESE532 Spring 2017 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 16: March 20, 2017
MPEG Encoding

Penn ESE532 Spring 2017 -- DeHon 2

Today
MPEG Encoding
•  Project
•  Motion Estimation
•  DCT
•  Entropy Encoding

Message
•  Compression is about exploiting

(eliminating)
– Redundancy (lossless)
– Things humans don’t notice much (lossy)

•  Redundancy in video
– Temporal: data repeated frame-to-frame
– Spatial: frequency patterns
– Quantize: high frequencies
– Entropy encode values (e.g. frequencies)

Penn ESE532 Spring 2017 -- DeHon 3

Project

•  Continue to work with MPEG Encoder
– Speed up as much as possible on Zynq
– Estimate custom design to achieve real-

time for 1080p30: 1920x1080 at 30 fps
•  Groups of 2 – you select partners
•  Next 5 weeks: project report 4/21
•  Weekly milestones

Penn ESE532 Spring 2017 -- DeHon 4

Why MPEG Encode?

•  Original intent: different problem
•  Experience:

– MPEG harder than intended for first half
warmup

– Probably right complexity for project
•  Avoid giving you a project too complex
•  Want you to succeed at accelerating

Penn ESE532 Spring 2017 -- DeHon 5

Expect

•  You will need to rewrite more of the
code than you have so far

•  C written for reference not organized or
written correctly for acceleration

Penn ESE532 Spring 2017 -- DeHon 6

2

Why not do this before?

Expected
•  wouldn’t need to get this deep into it for

the homework series.
– Could focus on bottleneck pieces and small

snippets
•  …as we did for HW3

•  was familiar

Penn ESE532 Spring 2017 -- DeHon 7

MPEG Encode

Penn ESE532 Spring 2017 -- DeHon 8

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 9

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 10

Temporal Redundancy

Penn ESE532 Spring 2017 -- DeHon 11

Frame-to-Frame

•  How are two immediately adjacent
video frames likely to be related?

•  Common cases
– Fixed camera (e.g. security camera)
– Panning camera
– Object moving left to right

Penn ESE532 Spring 2017 -- DeHon 12

3

Idea: Temporal Coding

•  If part of frame not change
– Avoid resending

•  If something moves in frame
– Avoid resending

•  Identify where to find in previous frame

Penn ESE532 Spring 2017 -- DeHon 13

MPEG Simplification

•  Break image into 16x16 macroblocks
•  Try to find macroblock in previous frame

–  (or subsequent frame)
•  Ideal

– Find perfect match
– Only send location of match

Penn ESE532 Spring 2017 -- DeHon 14

Preclass 1

•  How big is pointer for 1920x1080
frame?

•  How much cheaper than sending 16x16
macroblock with 8b pixels?

Penn ESE532 Spring 2017 -- DeHon 15

Macroblock Match

Finding “identical” macroblock:
•  Where is this likely to work?
•  What complicates?

Penn ESE532 Spring 2017 -- DeHon 16

Challenge

•  May not be exactly identical
– Shadows change
– Something moves over part of macroblock
– Thing in macroblock distorts

•  Person talks, turns, rotates
•  Object moves toward/away from camera

Penn ESE532 Spring 2017 -- DeHon 17

Not Identical

•  Send difference
– Maybe less information than new

macroblock
•  E.g.

– background occluded (exposed) on side
– Eye opens (closes)

Penn ESE532 Spring 2017 -- DeHon 18

4

Finding

•  Find matching macroblock
– Or best matching (hence dist)

•  How go about finding?

Penn ESE532 Spring 2017 -- DeHon 19

Local Search

•  Hypothesize that the macroblock is
nearby in previous image.
– Why might be good hypothesis?

•  Simple
– Exhaustively search within some distance

•  Why expensive?

Penn ESE532 Spring 2017 -- DeHon 20

Limited Motion

•  After a number of frames, less likely to
find in previous frame
– New objects, turns, rotation, scale…

•  Send new, non-motion coded reference

Penn ESE532 Spring 2017 -- DeHon 21

MPEG Frames

•  Interleave I, P, and B frames
–  I – not motion coded
– P – forward prediction frames

•  Predict from previous frame

– B – backward prediction frames
•  Predict from future frames

•  E.g. (IBBPBBPBBPBB)*

Penn ESE532 Spring 2017 -- DeHon 22

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 23

Spatial Redundancy

•  Can code more efficiently in frequency
domain

•  Humans notice low frequency
components more than high frequency
– Can use fewer bits for high frequency

components

Penn ESE532 Spring 2017 -- DeHon 24

5

Fourier Transform

•  Identify spectral components
•  Convert between Time-domain to

Frequency-domain
– E.g. tones from data samples
– Central to audio coding – e.g. MP3 audio

Penn ESE532 Spring 2017 -- DeHon 25

Day 14 Discrete Cosine Transform

•  Similar to FFT
•  Only uses Cosine (real part)
•  (boundary condition)

Penn ESE532 Spring 2017 -- DeHon 26 €

Y[k] = x[j] × cos π × k
N

j + 0.5()
⎡

⎣ ⎢
⎤

⎦ ⎥ j=0

n−1

∑

2D-DCT Basis

•  Actually compute 2D-DCT
– DCT in each spatial dimension
– On 8x8 blocks

•  Can be viewed as a basis transform
– Re-expressing the 8x8 block in terms of

8x8 selection of x and y frequencies

Penn ESE532 Spring 2017 -- DeHon 27

2D-DCT Basis

•  Basis vectors, so all
64 components are
orthogonal

•  Any 8x8 spatial is a
weighted sum of
these 64
components

Penn ESE532 Spring 2017 -- DeHon 28

Preclass 2

•  Represent all 23 pixel block?
•  Non-zeros for horizontal stripes?
•  Non-zeros for vertical stripes?

Penn ESE532 Spring 2017 -- DeHon 29

DCT Benefits

1.  Concentrates weight in low frequency
components (upper left)

2.  High frequency components can be
dropped or represented with few bits

–  Not matter so much to human perception

Penn ESE532 Spring 2017 -- DeHon 30

6

DCT Example

Penn ESE532 Spring 2017 -- DeHon 31
Source: http://img.tomshardware.com/us/1999/09/24/video_guide_part_3/dct.gif

2D DCT Calculation

•  Brute force like this
•  O(n4)

– n2 entries
– Each require n2 terms

Penn ESE532 Spring 2017 -- DeHon 32

€

Y[k,m] = x[i, j] × cos π × m
N

i + 0.5()
⎡

⎣ ⎢
⎤

⎦ ⎥ j=0

n−1

∑
i=0

n−1

∑ × cos π × k
N

j + 0.5()
⎡

⎣ ⎢
⎤

⎦ ⎥

2D DCT Calculation
fdct
•  Decompose, like FFT
•  Perform 1D DCT across rows O(n3)

– n2 results, each O(n)
•  Perform 1D DCT across columns O(n3)

Penn ESE532 Spring 2017 -- DeHon 33 €

Y[k] = x[j] × cos π × k
N

j + 0.5()
⎡

⎣ ⎢
⎤

⎦ ⎥ j=0

n−1

∑

€

Y[k,m] = x[i, j] × cos π × m
N

i + 0.5()
⎡

⎣ ⎢
⎤

⎦ ⎥ j=0

n−1

∑
i=0

n−1

∑ × cos π × k
N

j + 0.5()
⎡

⎣ ⎢
⎤

⎦ ⎥

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 34

Quantize

Penn ESE532 Spring 2017 -- DeHon 35

EXTERN unsigned char
default_intra_quantizer_matrix[64]
#ifdef GLOBAL
=
{
 8, 16, 19, 22, 26, 27, 29, 34,
 16, 16, 22, 24, 27, 29, 34, 37,
 19, 22, 26, 27, 29, 34, 34, 38,
 22, 22, 26, 27, 29, 34, 37, 40,
 22, 26, 27, 29, 32, 35, 40, 48,
 26, 27, 29, 32, 35, 40, 48, 58,
 26, 27, 29, 34, 38, 46, 56, 69,
 27, 29, 35, 38, 46, 56, 69, 83
}
#endif

Quantize

•  Divide by entry in
quantizer matrix before
change to integer

•  Most bits to upper left
•  Few bits to lower right

–  More things threshold to
zero

Penn ESE532 Spring 2017 -- DeHon 36

EXTERN unsigned char
default_intra_quantizer_matrix[64]
#ifdef GLOBAL
=
{
 8, 16, 19, 22, 26, 27, 29, 34,
 16, 16, 22, 24, 27, 29, 34, 37,
 19, 22, 26, 27, 29, 34, 34, 38,
 22, 22, 26, 27, 29, 34, 37, 40,
 22, 26, 27, 29, 32, 35, 40, 48,
 26, 27, 29, 32, 35, 40, 48, 58,
 26, 27, 29, 34, 38, 46, 56, 69,
 27, 29, 35, 38, 46, 56, 69, 83
}
#endif

7

Quantize and Precision

•  What does
quantization mean for
DCT precisions?

Penn ESE532 Spring 2017 -- DeHon 37

EXTERN unsigned char
default_intra_quantizer_matrix[64]
#ifdef GLOBAL
=
{
 8, 16, 19, 22, 26, 27, 29, 34,
 16, 16, 22, 24, 27, 29, 34, 37,
 19, 22, 26, 27, 29, 34, 34, 38,
 22, 22, 26, 27, 29, 34, 37, 40,
 22, 26, 27, 29, 32, 35, 40, 48,
 26, 27, 29, 32, 35, 40, 48, 58,
 26, 27, 29, 34, 38, 46, 56, 69,
 27, 29, 35, 38, 46, 56, 69, 83
}
#endif

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 38

Value Diminish to Lower Right

Penn ESE532 Spring 2017 -- DeHon 39
Source: http://img.tomshardware.com/us/1999/09/24/video_guide_part_3/dct.gif

Zig-Zag Order

•  Groups zeros (and small constants)
together at end

Penn ESE532 Spring 2017 -- DeHon 40
Source: https://en.wikipedia.org/wiki/JPEG#/media/File:JPEG_ZigZag.svg

Value Diminish to Lower Right

Penn ESE532 Spring 2017 -- DeHon 41

Source: http://img.tomshardware.com/us/1999/09/24/video_guide_part_3/dct.gif

Source: https://en.wikipedia.org/wiki/JPEG#/media/File:JPEG_ZigZag.svg

Value Diminish to Lower Right

Penn ESE532 Spring 2017 -- DeHon 42

Source: http://img.tomshardware.com/us/1999/09/24/video_guide_part_3/dct.gif

Source: https://en.wikipedia.org/wiki/JPEG#/media/File:JPEG_ZigZag.svg

45 -5 12 0 0 0 -4 -3 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ….

8

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 43

Preclass 3

•  How many numbers in the Run-Length
encoding?

Penn ESE532 Spring 2017 -- DeHon 44

45 -5 12 0 0 0 -4 -3 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ….

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 45

Preclass 4

•  How many bits to Huffman encode?
– Compare to 8b encoding of RLE?

Penn ESE532 Spring 2017 -- DeHon 46

Huffman

•  Bit twiddling for
Huffman coding
inefficient on word-
wide processor

Penn ESE532 Spring 2017 -- DeHon 47

void putbits(val,n)
{
 mask = 1 << (n-1); /* selects first (leftmost) bit */
 for (i=0; i<n; i++)
 {
 outbfr <<= 1;
 if (val & mask)
 outbfr|= 1;
 mask >>= 1; /* select next bit */
 outcnt--;
 if (outcnt==0) /* 8 bit buffer full */
 {
 output_buf[bytecnt] = outbfr;
 outcnt = 8;
 bytecnt++;
 if (bytecnt == OUTPUT_BUF_SIZE)
 error("Output buffer too small.");
 }
 }
}

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 48

9

MPEG Encoder

Penn ESE532 Spring 2017 -- DeHon 49

Big Ideas
•  Compression is about exploiting

(eliminating)
– Redundancy (lossless)
– Things humans don’t notice much (lossy)

•  Redundancy in video
– Temporal: data repeat frame-to-frame
– Spatial: frequency patterns
– Quantize: high frequencies
– Entropy encode values (e.g. frequencies)

Penn ESE532 Spring 2017 -- DeHon 50

Penn ESE532 Spring 2017 -- DeHon 51

Admin
•  Project and Project Analysis Milestone

out
•  Project Analysis Milestone due Friday

–  Including teaming

