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ESE532: 
System-on-a-Chip Architecture 

Day 21:  April 5, 2017 
VLSI Scaling 
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Today 
•  VLSI Scaling Rules 
•  Effects 
•  Historical/predicted scaling 
•  Variations (cheating) 
•  Limits 
•  Note: gory equations  
! goal is to understand trends 

– Give equations … then push through 
scaling implications together 

Message 

•  Technology advances rapidly 
•  Must account for in understanding 

– …platform will be available 
– …platforms will be inexpensive 
– …what our competitors can build 
– …new challenges and opportunities 

Penn ESE532 Spring 2017 -- DeHon 
3 

Penn ESE532 Spring 2017 -- DeHon 
4 

Why Care? 

•  In this game, we must be able to predict 
the future 

•  Technology advances rapidly 
•  Reason about changes and trends 
•  Re-evaluate prior solutions given 

technology at time X. 
•  Make direct comparison across 

technologies 
– E.g. to understand older designs 

•  What comes from process vs. architecture 
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Why Care: Custom SoC 

•  Cannot compare against what competitor 
does today  
– but what they can do at time you can ship 
– Development time > Technology generation 

•  Careful not to fall off curve 
–  lose out to someone who can stay on curve 
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Scaling 

•  Old Premise: features scale “uniformly” 
– everything gets better in a predictable 

manner 

•  Parameters: 
"  λ (lambda) -- Mead and Conway 
"  F -- Half pitch – ITRS   (F=2λ) 
"  S – scale factor – Rabaey 

" F’=S×F 
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ITRS Roadmap 

•  Semiconductor Industry rides this 
scaling curve 

•  Try to predict where industry going 
–  (requirements…self fulfilling prophecy) 

•  http://public.itrs.net 
•  http://www.semiconductors.org/main/

2015_international_technology_roadma
p_for_semiconductors_itrs/ 

Preclass  

•  Scale factor S from 28nm ! 20nm? 
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MOS Transistor Scaling 
(1974 to present) 

S=0.7 
[0.5x per 2 nodes] 

Pitch    Gate 

Source:  2001 ITRS - Exec. Summary, ORTC Figure [from Andrew Kahng] 
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Half Pitch (= Pitch/2) Definition 

(Typical 
MPU/ASIC) 

(Typical 
DRAM) 

  Poly  
  Pitch 

  Metal  
  Pitch 

Source:  2001 ITRS - Exec. Summary, ORTC Figure [from Andrew Kahng] 
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250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16 

0.5x 

0.7x 0.7x 

N N+1 N+2 

Node Cycle Time            
(T yrs): 

*CARR(T) = 

[(0.5)^(1/2T yrs)] - 1 

CARR(3 yrs) = -10.9% 

CARR(2 yrs) = -15.9% 

* CARR(T) = Compound Annual 
Reduction Rate                     

(@ cycle time period, T) 

L
og

 H
al

f-
Pi

tc
h  

Linear Time 

1994 NTRS - .
7x/3yrs 

Actual - .7x/2yrs 

Scaling Calculator +    Node 
Cycle Time: 

Source:  2001 ITRS - Exec. Summary, ORTC Figure [from Andrew Kahng] 

Warning 
•  Dive into detail equations 

– Not expect you necessarily know before 
•  Unless took 370, 570, 534… 

– Won’t expect you use later 
•  …but, you want to have an idea of the 

implications (area, performance, energy) 
•  If I just showed you results 

–  I think would be hard to follow 
– Not engaged 

•  So, we will do calculations together 
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Dimensions 
•  Channel Length (L) 
•  Channel Width (W) 
•  Oxide Thickness (Tox) 
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Scaling 

•  Channel Length (L) 
•  Channel Width (W) 
•  Oxide Thickness (Tox) 
•  Doping (Na) 
•  Voltage (V) 
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Full Scaling 
(Ideal Scaling, Dennard Scaling) 

•  Channel Length (L)         S 
•  Channel Width (W)          S 
•  Oxide Thickness (Tox)     S 
•  Doping (Na)                   1/S 
•  Voltage (V)                      S 
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Effects on Physical Properties? 

•  Area 
•  Capacitance 
•  Resistance 
•  Threshold (Vth) 
•  Current (Id) 
•  Gate Delay (τgd) 
•  Wire Delay (τwire) 
•  Energy 
•  Power  

•  Go through full 
(ideal) 

•  …then come back 
and ask what still 
makes sense today 

•  These are more the 
take-aways 
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Area 
" F# FS 
" Area impact? 
"   Α = L × W
"   Α # ΑS2 

"  28nm # 20nm 
"  50% area 
"  2× capacity same 

area 

S=0.7 
[0.5x per 2 nodes] 

Pitch    Gate 

L 

W 

Preclass 

•  When will have 100-core processor 
– What feature size? 
– What time frame? 
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Capacity Scaling from Wikipedia 
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Capacitance 

•  Capacitance per unit 
area scaling: 
– Cox= εSiO2/Tox 

– Tox# S×Tox

– Cox # Cox/S 
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Capacitance 

•  Gate Capacitance 
scaling? 
" Cgate= A×Cox 

" Α # Α×S2

" Cox # Cox/S
" Cgate # S×Cgate
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Resistance 

•  Resistance 
scaling? 

•  R=ρL/(W*t) 
•  W! S×W
•  L, t similar 
•  R ! R/S 
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Threshold Voltage 

•  VTH# S×VTH
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Current 
•  Saturation Current scaling? 

Id=(µCOX/2)(W/L)(Vgs-VTH)2 

Vgs=V! S×V 

VTH! S×VTH
W! S×W
L! S×L
Cox ! Cox/S 

Id! S×Id
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Current 

•  Velocity Saturation Current scaling: 

Vgs=V! S×V 

VTH! S×VTH 
L! S×L
VDSAT ! S×VDSAT  
W! S×W
Cox ! Cox/S 

Id! S×Id

€ 

IDS ≈νsatCOXW VGS −VT −
VDSAT

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

VDSAT ≈
Lνsat
µn
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Gate Delay 
" Gate Delay 

scaling? 
"   τgd=Q/I=(CV)/I 
" V! S×V 

"  Id ! S×Id
" C ! S×C 

"  τgd ! S×τgd 
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Overall Scaling Results, Transistor Speed and Leakage.   
Preliminary Data  
    from 2005 ITRS. 

Intrinsic Transistor 
Delay, τ = CV/I 

(lower delay = higher speed) 

Leakage Current 
(HP:  standby power 
dissipation issues) 

HP! Target: 
17%/yr, historical 
rate 

LOP LSTP 

LSTP! Target:  
Isd,leak ~ 10 pA/um 

LOP 

HP 

• HP = High-Performance Logic 
• LOP = Low Operating Power Logic 
• LSTP = Low Standby Power Logic 

17%/yr 
rate Planar Bulk 

MOSFETs 
Advanced 
MOSFETs 
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RO=Ring  
Oscillator  
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Wire Delay 

"  Wire delay 
scaling? 

"   τwire=R×C 

"  R ! R/S 
"  C ! S×C  
"   τwire ! τwire 

•  …assuming (logical) wire 
lengths remain 
constant... 

Impact of Wire and Gate 
Delay Scaling 

•  If gate delay scales down 
but wire delay does not scale, 
what does that suggest about the 
relative contribution of gate and wire 
delays to overall delay as we scale? 

Penn ESE532 Spring 2017 -- DeHon 
30 



6 

Energy 

•  Switching Energy per operation 
scaling? 

•  E=1/2 CV2 

" V! S×V 
" C ! S×C  
" E ! S3×E 
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Power Dissipation (Dynamic) 

•  Capacitive 
(Dis)charging 
scaling? 
" P=(1/2)CV2f 

" V! S×V 
" C ! S×C 

" P! S3×P

•  Increase 
Frequency? 

" τgd ! S×τgd   

" So: f ! f/S  ? 

" P ! S2×P
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Effects? 
•  Area                      S2 
•  Capacitance          S 
•  Resistance            1/S 
•  Threshold (Vth)       S 
•  Current (Id)             S 
•  Gate Delay (τgd)     S 
•  Wire Delay (τwire)    1 
•  Energy                   S3 
•  Power               S2!S3
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Power Density 

•  P# S2P (increase frequency)
•  P# S3P (dynamic, same freq.)
•  A # S2A

•  Power Density: P/A two cases? 
– P/A # P/A   increase freq. 
– P/A # S×P/A   same freq. 

Power Density 

•  P/A ! P/A very important 
•  Says, it doesn’t get any harder to cool 

as we scale exponentially to 
– More gates switching 
– Higher clock rates 

•  Don’t create an cooling bottleneck 
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Cheating… 

•  Don’t like some of the implications 
– High resistance wires 
– Higher capacitance 
– Atomic-scale dimensions 

•  …. Quantum tunneling  

– Not scale speed fast enough 
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Improving Resistance 

•  R=ρL/(W×t) 
•  W! S×W
•  L, t similar 
•  R ! R/S 
" What might we do? 
" Don’t scale t quite as fast ! now taller than wide. 
" Decrease ρ  (copper) – introduced 1997 

http://www.ibm.com/ibm100/us/en/icons/copperchip/ 
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3D View 
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Source: https://en.wikipedia.org/wiki/File:Silicon_chip_3d.PNG 
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Capacitance and Leakage 

•  Capacitance per unit 
area 
–  Cox= εSiO2/Tox 

–  Tox# S×Tox

–  Cox # Cox/S 

What’s wrong with Tox = 1.2nm? 

source: Borkar/Micro 2004 
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Capacitance and Leakage 

•  Capacitance per unit 
area 
–  Cox= εSiO2/Tox 

–  Tox# S×Tox

–  Cox # Cox/S 

Reduce Dielectric Constant ε (interconnect) 

and Increase Dielectric to substitute for scaling Tox  
                                            (gate quantum tunneling) 

What might we do? 
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High-K dielectric Survey 

Wong/IBM J. of R&D, V46N2/3P133—168, 2002 
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Improving Gate Delay 

Normal scale 
"   τgd=Q/I=(CV)/I 
" V! S×V 
"  Id=(µCOX/2)(W/L)(Vgs-VTH)2 

"  Id ! S×Id
" C ! S×C 

"  τgd ! S×τgd 

Don’t scale V: 
   V!V 
    I!I/S 
τgd ! S2×τgd  

What happens 
if don’t scale V? 
(note V impacts I) 
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…But  
Power Dissipation (Dynamic) 

•  Capacitive 
(Dis)charging 
" P=(1/2)CV2f 
" V! V
" C ! S×C 

•  Increase 
Frequency? 
"  f ! f/S2  ? 
" P ! P/S

If not scale V, power dissipation not scale down. 
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…And Power Density 

•  P! P/S (increase frequency)
•  But… Α ! S2×Α
•  What happens to power density? 

•  P/A ! (1/S3)P/A 

•  Power Density Increases  
…this is where some companies have gotten into trouble… 

Historical Voltage Scaling 

•  …and, we’re running into limits prevent 
voltage scaling going forward. 
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http://software.intel.com/en-us/articles/gigascale-integration-challenges-and-opportunities/ 

uP Power Density 
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The Future of Computing Performance: Game Over or Next Level? 
National Academy Press, 2011 

http://www.nap.edu/catalog.php?record_id=12980 

Watts 

Power Density 

•  Has become the new bottleneck 
•  Can put more transistors on a chip than 

we can afford to turn on 
– Can afford to operate at the frequency at 

which they are capable of switching 
•  Energy and Power, not capacity, limits 

performance 
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uProc Clock Frequency 
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The Future of Computing Performance: Game Over or Next Level? 
National Academy Press, 2011 

http://www.nap.edu/catalog.php?record_id=12980 

MHz 
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Physical Limits 

•  Doping? 
•  Features? 
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Physical Limits 
•  Depended on  

– bulk effects 
•  doping 
•  current (many electrons) 
•  mean free path in conductor 

–  localized to conductors 
•  Eventually 

– single electrons, atoms 
– distances close enough to allow tunneling 
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Dopants/Transistor 
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Leads to Variation 
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[Borkar, IEEE Micro Nov.-Dec. 2005] 
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Conventional Scaling 

•  Ends in your lifetime 
•  Perhaps already has: 

–  "Basically, this is the end of scaling.” 
•  May 2005, Bernard Meyerson, V.P. and chief 

technologist for IBM's systems and technology 
group  
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Bob Colwell 
March 2013 

Feature Size Scaling ITRS 
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IEEE Spectrum, Sep. 2016 

Intel says they’ve got 10nm 
covered 
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Conventional Scaling 

•  Ends in your lifetime 
•  Perhaps already: 

–  "Basically, this is the end of scaling.” 
•  May 2005, Bernard Meyerson, V.P. and chief 

technologist for IBM's systems and technology group  

•  Dennard Scaling ended 
•  Feature scaling end at 10nm? 
•  Transistor count integration may continue… 

– E.g. 3D 
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Finishing Up... 
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Big Ideas 
[MSB Ideas] 

•  Moderately predictable VLSI Scaling 
– unprecedented capacities/capability growth 

for engineered systems 
– change 
– be prepared to exploit 
– account for in comparing across time 
– …but not for much longer 
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Big Ideas 
[MSB-1 Ideas] 

•  Uniform scaling reasonably accurate for 
past couple of decades 

•  Area increase 1/S2

– Real capacity maybe a little less? 
•  Gate delay decreases (S) 

– …maybe a little less 
•  Wire delay not decrease, maybe increase 
•  Overall delay decrease less than (S) 
•  Lack of V scale ! Power density limit 
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Admin 
•  Project 4x and area Milestone 

– Due Friday 


