ESE532: System-on-a-Chip Architecture

Day 21: April 5, 2017 VLSI Scaling

3

Today

- VLSI Scaling Rules
- Effects
- · Historical/predicted scaling
- · Variations (cheating)
- Limits
- Note: gory equations
- \rightarrow goal is to understand trends
 - Give equations ... then push through scaling implications together

enn ESE532 Spring 2017 – DeHon

n ESE532 Spring 2017 - DeHon

Message

- · Technology advances rapidly
- · Must account for in understanding
 - ... platform will be available
 - ... platforms will be inexpensive
 - ... what our competitors can build
 - ... new challenges and opportunities

enn ESE532 Spring 2017 -- DeHon

nn ESE532 Spring 2017 -- DeHor

Why Care?

- In this game, we must be able to predict the future
- · Technology advances rapidly
- · Reason about changes and trends
- Re-evaluate prior solutions given technology at time X.
- Make direct comparison across technologies
 - E.g. to understand older designs

What comes from process vs. architecture

6

2

4

1

Penn ESE532 Spring 2017 -- DeHon

enn ESE532 Spring 2017 -- DeHor

able 2 Selected material and electrical properties of high-k gate dielectrics. Data compiled from Robertson [25], Gusev et al. [20], lubbard and Schlom [19], and other sources.					
Dielectric	Dielectric constant (bulk)	Bandgap (eV)	Conduction band offset (eV)	Leakage current reduction w.r.t. SiO ₂	Thermal stability w.r.t silicon (MEIS data)
Silicon dioxide (SiO2)	3.9	9	3.5	N/A	$>1050^{\circ}C$
Silicon nitride (Si3N4)	7	5.3	2.4		$>1050^{\circ}C$
Aluminum oxide (Al ₂ O ₃)	~ 10	8.8	2.8	$10^{2}-10^{3}$ ×	$\sim 1000^{\circ}$ C, RTA
Tantulum pentoxide (Ta ₂ O ₅)	25	4.4	0.36		Not thermodynamical stable with silicon
Lanthanum oxide (La2O3)	~ 21	6.	2.3		
Gadolinium oxide (Gd ₂ O ₃)	~12				
Yttrium oxide (Y2O3)	~15	6	2.3	$10^4 - 10^5 \times$	Silicate formation
Hafnium oxide (HfO2)	~ 20	6	1.5	10^{4} - 10^{8} ×	$\sim 950^{\circ}C$
Zirconium oxide (ZrO2)	~23	5.8	1.4	$10^{4}-10^{5}\times$	$\sim 900^{\circ}C$
Strontium titanate (SrTiO3)		3.3	-0.1		
Zirconium silicate (ZrSiO ₄)		6°	1.5		
Hafnium silicate (HfSiO,)		6.	1.5		

Big Ideas [MSB Ideas]

Moderately predictable VLSI Scaling

 unprecedented capacities/capability growth for engineered systems

- change

- be prepared to exploit
- account for in comparing across time
- ... but not for much longer

enn ESE532 Spring 2017 -- DeHon

enn ESE532 Spring 2017 -- DeHon

Big Ideas [MSB-1 Ideas]

- Uniform scaling reasonably accurate for past couple of decades
- Area increase 1/S²
 Real capacity maybe a little less?
- Gate delay decreases (S) – ...maybe a little less
- Wire delay not decrease, maybe increase

62

- Overall delay decrease less than (S)
- Lack of V scale \rightarrow Power density limit

nn ESE532 Spring 2017 – DeHon

Admin • Project 4x and area Milestone – Due Friday

63

61