ESE532:
System-on-a-Chip Architecture

Day 22: April 10, 2017
Energy

Message

- Energy dominates
- Including limiting performance
- Make memories small and wires short
- Small memories cost less energy per read
- Accelerators reduce energy
- Compared to processors

Preclass 1--4

- 20,000 gates $/ \mathrm{mm}^{2}$ - Gates on $1 \mathrm{~cm}^{2}$
- $2.5^{*} 10^{-15} \mathrm{~J} /$ gate . Energy to switch all? switch
- Power at 1 GHz ?
- Fraction can switch with 1W/cm ${ }^{2}$ power budget?

Today

Energy

- Today's bottleneck
- What drives
- Efficiency of
- Processors, FPGAs, accelerators

Energy

- Growing domain of portables
- Less energy/op \rightarrow longer battery life
- Global Energy Crisis
- Power-envelope at key limit
- E reduce \rightarrow increase compute in P-envelope
- Scaling
- Power density not transistors limit sustained ops/s
- Server rooms
- Cost-of-ownership not dominated by Silicon
-Cooling, Power bill
Penn ESE532 Spring 2017 - DeHon

Origin of Power Challenge

- Limited capacity to remove heat
- ~100W/cm² force air
$-1-10 \mathrm{~W} / \mathrm{cm}^{2}$ ambient
- Transistors per chip grow at Moore's Law rate $=(1 / F)^{2}$
- Energy/transistor must decrease at this rate to keep constant power density
- P/tr $\propto \mathrm{CV}^{2 \mathrm{f}}$
- $\mathrm{E} / \mathrm{tr} \propto \mathrm{CV}^{2}$
- ...but V scaling more slowly than F

Origin of Power Challenge

- Transistors per chip grow at Moore's Law rate $=(1 / F)^{2}$
- Energy/transistor must decrease at this rate to keep constant
- $\mathrm{E} / \mathrm{tr} \propto \mathrm{CV}^{2}$

Penn ESE532 Spring 2017 - DeHon
10

Impact

- Power density is limiting scaling
- Can already place more transistors on a chip than we can afford to turn on!
- Power is potential challenge/limiter for all future chips.
- Only turn on small percentage of transistors?
- Operate those transistors as much slower frequency?
- Find a way to drop $V_{d d}$?

- It is Energy that defines
- Ops/s can extract from a power-limited chip
- Ops/battery-hour can extract from a portable
- If a technology makes E/op worse
- That technology is worse
-End-of-scaling

Switching Energy

$$
E_{\text {switch }} \propto \alpha C V^{2}
$$

- C - driven by architecture
- Also impacted by variation, aging
- V - today, driven by variation, aging
- α - driven by architecture, coding/information

Preclass 6

Memory bank

- Leaks at $8 \mu \mathrm{~W}$
- At what rate of reads does $E_{\text {switch }}>\mathrm{E}_{\text {leak }}$?
- Switches 24 pJ/read
Energy
$E_{\text {total }}=E_{\text {switch }}+E_{\text {leak }}$
$E_{\text {switch }} \propto \alpha C V^{2}$
$E_{\text {leak }}=I_{\text {leak }} \times V \times T$

Operating a Transistor

- Concerned about $I_{\text {on }}$ and $I_{\text {off }}$
- $I_{\text {on }}$ drive (saturation) current for charging
- Determines speed (latency): $\mathrm{T}_{\mathrm{gd}}=\mathrm{CV} / \mathrm{I}$
- $I_{\text {off }}$ leakage current
- Determines leakage power/energy:
- $P_{\text {leak }}=V \times\left.\right|_{\text {leak }}$
- $\mathrm{E}_{\text {leak }}=\mathrm{V} \times \mathrm{I}_{\text {leak }} \times \mathrm{T}_{\text {cycle }}$

Statistical Dopant Count and Placement	

Variation

- Fewer dopants, atoms \rightarrow increasing Variation
- How do we deal with variation?

| Variations |
| :--- | :--- |
| - Margins growing due to |
| increasing variation |
| Margined value may be worse than older
 technology? |
| |

Scaling	
- Voltage scaling mostly over - Need $\sim 300 \mathrm{mV}$ for lon/loff - Plus variation and noise margin	
$E_{\text {switch }} \propto \alpha C V$	$E_{l e a k}=I_{l e a k} \times V \times T$
Penn ESE532 Spring 2017 - Detton	34

Switching Energy

$E_{\text {swich }} \propto \alpha C V^{2}$

- C - driven by architecture
- Also impacted by variation, aging
- V - today, driven by variation, aging
- α - driven by architecture, information

Penn ESE532 Spring 2017 -- DeHon

Data Dependent Activity

- Consider an 8b counter
- How often do each of the following switch?
- Low bit?
- High bit?
- Average switching across all 8 output bits?
- Assuming random inputs
- Activity at output of nand4?
- Activity at output of xor4?

Switching Energy

$$
E_{\text {swich }}=\left(\sum_{i} \alpha_{i} C_{i}\right) V^{2}
$$

$\mathrm{C}_{\mathrm{i}}==$ capacitance driven by each gate (including wire)

Switching Rate $\left(\alpha_{i}\right)$ Varies

- Different logic (low/high bits, gate type)
- Different usage
- Gate off unused functional units
- Data coded
- Entropy in data
- Average α 5--15\% plausible
$+\mathrm{P}(1 @ \mathrm{i}) * \mathrm{P}(0 @ \mathrm{i}+1)$

Switching Energy

$$
E_{\text {switch }} \propto \alpha C V^{2}
$$

- C - driven by architecture
- Also impacted by variation, aging
- V - today, driven by variation, aging
- α - driven by architecture, information

Wire Capacitance

- How does wire capacitance relate to wire length?

Wire Driven Implications

- Care about locality
- Long wires are higher energy
- Producers near consumers
- Memories near compute
- Esp. for large α_{i} 's
- Care about size/area
- Reduce (worst-case) distance must cross
- Care about minimizing data movement
- Less data, less often, smaller distances
- Care about size of memories

45

Wire Capacitance

- $\mathrm{C}=\varepsilon \mathrm{A} / \mathrm{d}=\varepsilon \mathrm{W}^{*} \mathrm{~L}_{\text {wire }} / \mathrm{d}=\mathrm{C}_{\text {unit }}{ }^{*} \mathrm{~L}_{\text {wire }}$
- Wire capacitance is linear in wire length
- E.g. 1.7pF/cm (preclass)
- Remains true if buffer wire
- Add buffered segment at fixed lengths

Preclass 5

- Primary switching capacitance in wires
- How does energy of a ready grow with capacity (N) of a memory bank?
- Energy per bit?

Memory Implications

- Memory energy can be expensive
- Small memories cost less energy than large memories
- Use data from small memories as much as possible
- Cheaper to re-use data item from register than re-reading from memory

Architectural Implications

Component Numbers

- Processor instruction 100x more than arithmetic
- Register read $2 x$
- RAM read 10x
- Why processor instruction > arith operation?

ARM Cortex A9

Estimate find: 0.5 W at 800 MHz in 40 nm

- 0.5/0.8 x $10^{-9} \mathrm{~J} / \mathrm{instr}$
- ~600pJ/instr
- Scale to 28 nm
- maybe $0.7^{*} 600 — 0.5^{*} 600$
-300-400pJ/instr?
- Is superscalar w/ neon, so not as simple a processor as previous example

ARM Cortex A7, A15 (Samsung 28nm)

Instruction	Cortex-A7		Cortex-A15		
	min EPI	max EPI	min EPI	max EPI	
Simple Integer	50	80	200	450	
Simple Float/Double	90	200	250	1500	
Multiplication	80	340	360	1730	
Division	150	1200	1270	1960	
Load (L1 hit)	150	195	450	450	
Store (L1 hit)	185	195	680	750	
Store (L1 miss)		200	700		
Load (L1 miss)	270			1000	

[Evangelos Vasilakis, Technical Report FORTH-ICS/TR-450, March 2015]
http://www.ics.forth.gr/carv/greenvm/files/tr450.pdf 53
enn ESE532 Spring 2017 - DeHon

Processor Differences

- What different among A7, A9, A15?

Implications

- Complex, multi-issue superscalars
- Cost more energy per operation
- Spend energy on issue logic, etc. that does not go into computation for the task
- Even if can get performance from superscalar processors
- For energy reasons, benefit getting it elsewhere

57

Zynq				
omenom	\ldots	Amma	amamembuem	cickus
隹		${ }_{\text {ave }}$		
	\%	ail		
mame	unam			
隹	,	${ }_{\text {a }}$		23
Name ow		$\xrightarrow{\text { cunow }}$ (ruobe		4
- ARM A9 instruction 300-400pJ - ARM A9 L1 cache read 23pJ				
		Xilinx UG585-Zymq TRM ${ }^{58}$		

Compare

- Assume ARM Cortex A9 executes $8 \times 16 b$ Neon vector multiply instruction for 300pJ
- Compare to 16×16 multiplies on FPGA?

Operation	$\begin{gathered} \text { PL } \\ \text { Resource } \end{gathered}$	ARM A9 Resource	ARM A9 energy/OP (pico Joules or $\mathrm{mW} / \mathrm{GOP} / \mathrm{sec}$)	PL energy/OP (pico Joules op $\mathrm{mW} / \mathrm{GOP} / \mathrm{sec}$)
Logical Op of 2 var	LUT/FF	ALU		1.3
32-bit ADD	LUT/FF	alu		1.3
16x16 Mult	DSP	AlU		8.0
32-bit Read/Write register	LUTRAM	11		1.4
32-bit Read/Write AXI register	LUT/FF	AXI		30
32-bit Read/Write local RAM	BRAM	12		23.7/17.2
32-bit Read/Write OCM	AXI/OCM	CPU/OCM		44
32-bit Read/Write DDR3	AXI/DDR	CPU/DDR		541/211

Programmable Datapath

- Performing an operation in a pipelined datapath can be orders of magnitude less energy than on a processor
- ARM 300pJ vs. 1.3pJ 32b add
- Even neon 300pJ vs. $4 \times 1.3 p J$ for $4 \times 32 b$ add
- 300pJ vs. 8x8pJ for 8 16x16b multiplies

FPGA vS. Std Cell	TABLE VI Dynamic Power Consumption ratio (FPGA/ASIC)					
	Name	Method	$\begin{aligned} & \hline \text { Logic } \\ & \text { Only } \end{aligned}$	$\begin{gathered} \hline \text { Logic } \\ \& \\ \text { DSP } \end{gathered}$	$\begin{gathered} \hline \text { Logic } \\ \& \\ \text { Memory } \end{gathered}$	$\begin{gathered} \text { Logic, } \\ \text { Memory } \\ \& \text { DSP } \end{gathered}$
Energy	booth	Sim	26			
	rs_encoder cordic18	Sim	52 6.3			
- 90nm	cordic8	Const	5.7			
	des.area	Const	27			
	des.perf	$\underset{\text { Const }}{\text { Const }}$	9.3 9.6			
- FPGA. Stratix II- STMicro CMOS090	macl	Const	19			
	fir3	Const	12	7.5		
	diffeq diffeq2	Const Const	15 16	12 12		
	molecular	Const	15	16		
- eASIC (MPGA) claim	rs_decoder 1	Const	13	16		
	rs.decoder2	Const	11	11		
	${ }_{\substack{\text { atm } \\ \text { aes }}}$	Const Sim			15 13	
	aes inv	Sim			12	
	ethernet	${ }_{\text {Const }}$			16 16	
-20% of FPGA power		Const Cost				5.3
- (best case)	pipe5proc raytracer	$\begin{aligned} & \text { Const } \\ & \text { Const } \end{aligned}$				8.2 8.3
	Geomean		14	12	14	7.1
[Kuon/Rose TRCADv26n2p203--215 2007]		007]		64		

Zero-Overhead Loop Simplify

- TI DSPs specialized w/ tricks like ZOL...
- Fewer instructions, less energy/instruction

Simplified Comparison

- Processor two orders of magnitude higher energy than custom accelerator
- FPGA accelerator in between
- Order of magnitude lower than processor
- Order of magnitude higher than custom

Admin
- Project energy Milestone
- Due Friday

