
1

Penn ESE532 Spring 2017 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 3: January 23, 2017
Parallelism Overview

Penn ESE532 Spring 2017 -- DeHon
2

Today
•  Parallelism in Tasks
•  Types of Parallelism
•  Compute Models
•  System Architectures

Message

•  Many useful models for parallelism
– Help conceptualize

•  One-size does not fill all
– But maybe 6—10 do?
– Match to problem

Penn ESE532 Spring 2017 -- DeHon
3

Preclass 1

•  How do 6 people
collaborate on
sphere building?

Penn ESE532 Spring 2017 -- DeHon
4

Preclass 2

•  How do 12 people
collaborate on
sphere building?

Penn ESE532 Spring 2017 -- DeHon
5

Preclass 3

•  How do 6 people
collaborate on
building 3 spheres?

•  (alternate solution?)

Penn ESE532 Spring 2017 -- DeHon
6

2

In Class Exercise

•  Distribute 24 piece sets for building
Red and Yellow Sphere
–  [if have more than 24 people, have pairs

build a different model]

•  Follow instructions from slides to come

Penn ESE532 Spring 2017 -- DeHon
7

Penn ESE532 Spring 2017 -- DeHon
8

Step 1: Build half of L1

Penn ESE532 Spring 2017 -- DeHon
9

Step 2: Build half of L2 Step 3:

•  Pass half to builder with 2x2 plate

Penn ESE532 Spring 2017 -- DeHon
10

Penn ESE532 Spring 2017 -- DeHon
11

Step 4: Build L3 Step 5: Build L5 (ends)

Penn ESE532 Spring 2017 -- DeHon
12

(if have pieces)

3

Step 6:

•  Pass both “L5: ends” to builder with side

Penn ESE532 Spring 2017 -- DeHon
13

Step 7: half of L7

Penn ESE532 Spring 2017 -- DeHon
14

Install one side

Step 8:

•  Pass assemble to builder with unused
side

Penn ESE532 Spring 2017 -- DeHon
15

Step 9: finish L7

Penn ESE532 Spring 2017 -- DeHon
16

Step 10:

•  Pass assemble to builder with unused
side

Penn ESE532 Spring 2017 -- DeHon
17

Step 11: add 3rd side

Penn ESE532 Spring 2017 -- DeHon
18

4

Step 12:

•  Pass assemble to builder with unused
side

Penn ESE532 Spring 2017 -- DeHon
19

Step 13: add final side

Penn ESE532 Spring 2017 -- DeHon
20

Finish

•  Check status of all builds

Penn ESE532 Spring 2017 -- DeHon
21

Types of Parallelism

Penn ESE532 Spring 2017 -- DeHon
22

Types of Parallelism

•  What kind of
parallelism did we
see for steps 1—3?

Penn ESE532 Spring 2017 -- DeHon
23

Types of Parallelism

•  What parallelism
when some folks
built different
model?

Penn ESE532 Spring 2017 -- DeHon
24

5

Types of Parallelism

•  What could we build
independently here?

•  Kind of parallelism?

Penn ESE532 Spring 2017 -- DeHon
25

Type of Parallelism

•  Latency multiply = 1
•  Latency add = 1
•  (different Day2)

Penn ESE532 Spring 2017 -- DeHon
26

cycle mpy add
1 B,x
2 x,x (Bx)+C
3 A,x2

4 Ax2+(Bx+C)

Kind of Parallelism?

Types of Parallelism

•  Data Level – Perform same
computation on different data items

•  Thread or Task Level – Perform
separable (perhaps heterogeneous)
tasks independently

•  Instruction Level – Within a single
sequential thread, perform multiple
operations on each cycle.

Penn ESE532 Spring 2017 -- DeHon
27

Parallel Compute Models

Penn ESE532 Spring 2017 -- DeHon
28

Penn ESE535 Spring 2015 -- DeHon
29

Sequential Control Flow

Control flow
•  Program is a

sequence of
operations

•  Operation reads
inputs and writes
outputs into common
store

•  One operation runs at
a time
–  defines successor

Model of correctness
is sequential
execution

Examples
 C (Java, …)
 FSM / FA

Can be explicit

•  Sphere Build
example Step 2

•  Coordinate data
parallel operations

•  Multiply, add for
quadratic equation

•  Coordinate ILP

Penn ESE532 Spring 2017 -- DeHon
30

cycle mpy add
1 B,x
2 x,x (Bx)+C
3 A,x2

4 Ax2+(Bx+C)

6

Can be implicit

•  Sequential
expression

•  Infer data
dependencies

T1=x*x
T2=A*T1
T3=B*x
T4=T2+T3
Y=C+T4

•  Or
Y=A*x*x+B*x+C

Penn ESE532 Spring 2017 -- DeHon
31

Can be implicit

•  Sequential
expression

•  Infer data
dependencies

for (i=0;i<100;i++)
 Y[i]=A*x[i]*x[i]+B*x[i]+C

Penn ESE532 Spring 2017 -- DeHon
32

Term: Operation

•  Operation – logic computation to be
performed

Penn ESE535 Spring 2015 -- DeHon
33

Penn ESE535 Spring 2015 -- DeHon
34

Dataflow / Control Flow

Dataflow
•  Program is a graph

of operations
•  Operation consumes

tokens and
produces tokens

•  All operations run
concurrently

Control flow (e.g. C)
•  Program is a

sequence of
operations

•  Operation reads
inputs and writes
outputs into
common store

•  One operation runs
at a time
–  defines successor

Penn ESE535 Spring 2015 -- DeHon
35

Token

•  Data value with presence indication
– May be conceptual

•  Only exist in high-level model
•  Not kept around at runtime

– Or may be physically represented
•  One bit represents presence/absence of data

Token Examples?

•  What are familiar cases where data may
come with presence tokens?
– Network packets
– Memory references from processor

•  Variable latency depending on cache presence

– Start bit on serial communication

Penn ESE535 Spring 2015 -- DeHon
36

7

Penn ESE535 Spring 2015 -- DeHon
37

Operation

•  Takes in one or more inputs
•  Computes on the inputs
•  Produces results

•  Logically self-timed
–  “Fires” only when input set present
– Signals availability of output

Penn ESE535 Spring 2015 -- DeHon
38

Penn ESE535 Spring 2015 -- DeHon
39

Dataflow Graph
•  Represents

– computation sub-blocks
–  linkage

•  Abstractly
– controlled by data presence

Penn ESE535 Spring 2015 -- DeHon
40

Dataflow Graph Example

Sequential / FSM

•  FSM is degenerate dataflow graph
where there is exactly one token

Penn ESE532 Spring 2017 -- DeHon
41

cycle mpy add next
S1 B,x x-->S2,

else S1
S2 x,x (Bx)+C S3
S3 A,x2 S4
S4 Ax2+(Bx+C) S1

S1

S2

S3

S4

x not
present?

Sequential / FSM

•  FSM is degenerate dataflow graph
where there is exactly one token

Penn ESE532 Spring 2017 -- DeHon
42

cycle mpy add next
S1 B,x x-->S2,

else S1
S2 x,x (Bx)+C S3
S3 A,x2 S4
S4 Ax2+(Bx+C) S1

S1

S2

S3

S4

8

Communicating Threads

•  Computation is a collection of
sequential/control-flow “threads”

•  Threads may communicate
– Through dataflow I/O
–  (Through shared variables)

•  View as hybrid or generalization

Penn ESE532 Spring 2017 -- DeHon
43

Video Decode

Penn ESE532 Spring 2017 -- DeHon
44

Parse

Audio

Sync to
HDMI

Video

Compute Models

Penn ESE532 Spring 2017 -- DeHon
45

System Architectures

Penn ESE532 Spring 2017 -- DeHon
46

FPT Tutorial: DeHon 2005
47

System Architecture Hypothesis

•  There are a small number of useful
system architectures

•  These architectures
– Give guidance for organizing resources
– Make manageable
– Allow share lessons between applications
– Provide basis for scalability
– Point toward efficient solutions

FPT Tutorial: DeHon 2005
48

Unconstrained Model
•  Multithreaded programming

(equivalently Communicating Sequential
Processes)
–  Application is collection of threads
–  Communicate with each other
–  May or may not have shared memory
–  Programmer responsible for

•  Synchronization
•  Parallelism
•  Data layout
•  Communications…

9

FPT Tutorial: DeHon 2005
49

Architectural Restrictions
•  Sequential Control

– Data Parallel ! all parallel processing
does the same thing

– Lock-Step ! all parallel processing does
different things at synchronized time (e.g.
VLIW)

– Bulk Synchronous ! periodic barrier
synchronization

–  Instruction Augmentation – control
accelerators from seq. instruction stream

Very Long Instruction Word
(VLIW)

Penn ESE532 Spring 2017 -- DeHon
50

Instruction Augmentation
Co-Processor

Penn ESE532 Spring 2017 -- DeHon
51

Very Long Instruction Word
(VLIW)

Penn ESE532 Spring 2017 -- DeHon
52

cycle mpy add
1 B,x
2 x,x (Bx)+C
3 A,x2

4 Ax2+(Bx+C)

FPT Tutorial: DeHon 2005
53

Architectural Restrictions (2)

•  Dataflow interactions
– Allow multithreaded operation
– Use data presence for synchronization

•  E.g.
– Pipe-and-filter / Streaming Dataflow
– Synchronous Dataflow (SDF)

Penn ESE535 Spring 2015 -- DeHon
54

Producer-Consumer Parallelism

•  Can run concurrently
•  Just let consumer know when producer

sending data

Stock
predictions encrypt

10

Penn ESE535 Spring 2015 -- DeHon
55

Pipeline Parallelism

•  Can potentially all run in parallel
•  Like physical pipeline
•  Useful to think about stream of data

between operators

ME DCT VQ code

FPT Tutorial: DeHon 2005
56

Architectural Restrictions (3)

•  Regular Communication Patterns
– Systolic
– Cellular Automata ! regular grid of

homogeneous FSMs

FPT Tutorial: DeHon 2005
57

Architectural Restrictions (4)

•  Memory/Data Centric
– Computation is collection of objects in

memory
– Each object triggered by input changes
– Compute and potentially trigger other

objects
•  E.g.

– Repository models
– GraphStep
– App: network flow, routing…

Work Farm

•  Central controller farms out work

Penn ESE532 Spring 2017 -- DeHon
58

System Architecture Taxonomy

Penn ESE532 Spring 2017 -- DeHon
59

FPT Tutorial: DeHon 2005
60

System
Architecture
Taxonomy

•  Further down the hierarchy
– More restricted the model
+ More guidance provided
+ More efficient potential implementation
+ More amenable to analysis

• ! tools and optimizations

•  Restrictions provide power

11

FPT Tutorial: DeHon 2005
61

System
Architecture
Taxonomy

•  Further down the hierarchy
–  More restricted the model
+ More guidance provided
+ More efficient potential implementation
+ More amenable to analysis

•  ! tools and optimizations

•  Restrictions provide power

•  When you have a big enough
hammer, everything looks like
a nail.

•  Many stuck on single model
– Try to make all problems look like their nail

•  Value to diversity / heterogeneity
– One size does not fit all

Penn ESE532 Spring 2017 -- DeHon
62

FPT Tutorial: DeHon 2005
63

System Architecture Hypothesis

•  There are a small number of useful
system architectures

•  These architectures
– Give guidance for organizing resources
– Make manageable
– Allow share lessons between applications
– Provide basis for scalability
– Point toward efficient solutions

System Architectures

Penn ESE532 Spring 2017 -- DeHon
64

Model ! Architecture not 1:1

Penn ESE532 Spring 2017 -- DeHon
65

Penn ESE532 Spring 2017 -- DeHon
66

Big Ideas

•  Many parallel compute models
– Sequential, Dataflow, CSP

•  Useful System Architectures
– Streaming Dataflow, VLIW, co-processor,

work farm, SIMD, Vector, CA, FSMD, …
•  Find natural parallelism in problem
•  Mix-and-match

12

Admin
•  Reading for Day 4 on web
•  Talk on Thursday by Ed Lee (UCB)

– 3pm in Wu and Chen
•  HW2 due Friday

Penn ESE532 Spring 2017 -- DeHon
67

