
1

Penn ESE532 Spring 2017 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 4: January 25, 2017
Data-Level Parallelism

Penn ESE532 Spring 2017 -- DeHon
2

Today
Data-level Parallelism
•  For Parallel Decomposition
•  Architectures
•  Concepts
•  NEON

Message

•  Data Parallelism easy basis for
decomposition

•  Data Parallel architectures can be
compact – pack more computations
onto a die

Penn ESE532 Spring 2017 -- DeHon
3

Preclass 1

•  300 news articles
•  Count total occurrences of a string
•  How can we exploit data-level

parallelism on task?
•  How much parallelism can we exploit?

Penn ESE532 Spring 2017 -- DeHon
4

Parallel Decomposition

Penn ESE532 Spring 2017 -- DeHon
5

Data Parallel

•  Data-level parallelism can serve as an
organizing principle for parallel task
decomposition

•  Run computation on independent data
in parallel

Penn ESE532 Spring 2017 -- DeHon
6

2

Exploit

•  Can exploit with
– Threads
–  Instruction-level Parallelism
– Fine-grained Data-Level Parallelism

Penn ESE532 Spring 2017 -- DeHon
7

Thread Exploit DP

•  How exploit threads for data-parallel
text search?

Penn ESE532 Spring 2017 -- DeHon
8

SPMD

Single Program Multiple Data
•  Only need to write code once
•  Get to use many times

Penn ESE532 Spring 2017 -- DeHon
9

ILP Exploit DP

•  How exploit ILP for DP?

Penn ESE532 Spring 2017 -- DeHon
10

+ ALU ALU

Address Instruction
Memory

Pipeline Exploit

•  How exploit hardware pipeline for text
search?

Penn ESE532 Spring 2017 -- DeHon
11

Common Examples

•  What are common examples of DLP?
– Signal Processing
– Simulation
– Numerical Linear Algebra
– Graphics
–  Image Processing
– Optimization
– Other?

Penn ESE532 Spring 2017 -- DeHon
12

3

Hardware Architectures

Penn ESE532 Spring 2017 -- DeHon
13

Idea

•  If we’re going to perform the same
operations on different data,
exploit that to reduce area, energy

•  Reduced area means can have more
computation on a fixed-size die.

Penn ESE532 Spring 2017 -- DeHon
14

SIMD

•  Single Instruction Multiple Data

Penn ESE532 Spring 2017 -- DeHon
15

W-bit ALU as SIMD
•  Familiar idea
•  A W-bit ALU (W=8, 16, 32, 64, …) is SIMD
•  Each bit of ALU works on separate bits

– Performing the same operation on it
•  Trivial to see bitwise AND, OR, XOR
•  Also true for ADD (each bit performing Full Adder)

•  Share one instruction across all ALU bits

Penn ESE532 Spring 2017 -- DeHon
16

ALU Bit Slice

• 

Penn ESE532 Spring 2017 -- DeHon
17

Register File
•  Small Memory
•  Usually with multiple

ports
–  Ability to perform

multiple reads and
writes simultaneously

•  Small
–  To make it fast (small

memories fast)
–  Multiple ports are

expensive
Penn ESE532 Spring 2017 -- DeHon

18

4

Preclass 2

•  Area W=16?
•  Area W=128?

•  Number in 108
–  W=16
–  W=128

•  Perfect Pack Ratio?

Penn ESE532 Spring 2017 -- DeHon
19

Preclass 2

•  W for single
datapath in 108?

•  Perfect 16b pack
ratio?

•  Compare W=128
perfect pack ratio?

Penn ESE532 Spring 2017 -- DeHon
20

ALU vs. SIMD ?

•  What’s different between
– 128b wide ALU
– SIMD datapath supporting eight 16b ALU

operations

Penn ESE532 Spring 2017 -- DeHon
21

Segmented Datapath

•  Relatively easy (few additional gates) to
convert a wide datapath into one
supporting a set of smaller operations
– Just need to squash the carry at points

Penn ESE532 Spring 2017 -- DeHon
22

Segmented Datapath

•  Relatively easy (few additional gates) to
convert a wide datapath into one
supporting a set of smaller operations
– Just need to squash the carry at points

•  But need to keep instructions
(description) small
– So typically have limited, homogeneous

widths supported

Penn ESE532 Spring 2017 -- DeHon
23

Segmented 128b Datapath

•  1x128b, 2x64b, 4x32b, 8x16b

Penn ESE532 Spring 2017 -- DeHon
24

5

Terminology: Vector Lane
•  Each of the separate segments called a

Vector Lane
•  For 16b data, this provides 8 vector lanes

Penn ESE532 Spring 2017 -- DeHon
25

Opportunity

•  Don’t need 64b variables for lots of
things

•  Natural data sizes?
– Audio samples?
–  Input from A/D?
– Video Pixels?
– X, Y coordinates for 4K x 4K image?

Penn ESE532 Spring 2017 -- DeHon
26

Vector Computation

•  Easy to map to SIMD flow if can
express computation as operation on
vectors
– Vector Add
– Vector Multiply
– Dot Product

Penn ESE532 Spring 2017 -- DeHon
27

Concepts

Penn ESE532 Spring 2017 -- DeHon
28

Vector Register File
•  Need to be able to feed the SIMD

compute units
– Not be bottlenecked on data movement to

the SIMD ALU
•  Wide RF to supply
•  With wide path to memory

Penn ESE532 Spring 2017 -- DeHon
29

Point-wise Vector Operations

•  Easy – just like wide-word operations
(now with segmentation)

Penn ESE532 Spring 2017 -- DeHon
30

6

Point-wise Vector Operations

•  …but alignment matters.
•  If not aligned, need to perform data

movement operations to get aligned

Penn ESE532 Spring 2017 -- DeHon
31

Vector Length

•  May not match physical hardware length
•  What happens when

– Vector length > hardware SIMD operators?
– Vector length < hardware SIMD operators?
– Vector length % hdw operators !=0

•  E.g. vector length 20, for 8 hdw operators

Penn ESE532 Spring 2017 -- DeHon
32

Skipping Elements?

•  How does this work with datapath?
•  for (i=0;i<64;i=i+2)

– c[i]=a[i]+b[i]

Penn ESE532 Spring 2017 -- DeHon
33

Stride

•  Stride: the distance between vector
elements used

•  for (i=0;i<64;i=i+2)
– c[i]=a[i]+b[i]

•  Accessing data with stride=2

Penn ESE532 Spring 2017 -- DeHon
34

Load/Store

•  Strided load/stores
– Some architectures will provide strided

memory access that compact when read
into register file

•  Scatter/gather
– Some architectures will provide memory

operations to grab data from different
places to construct a dense vector

Penn ESE532 Spring 2017 -- DeHon
35

Conditionals?

•  What happens if want to do something
different?

•  For (i=0;i<8;i++)
–  if (a[i]<b[i])

•  d[i]=a[i]+c[i]

– else
•  d[i]=b[i]+c[i]

Penn ESE532 Spring 2017 -- DeHon
36

7

Conditionals

•  Only have one Program Counter
– Cannot implement conditional via

branching

Penn ESE532 Spring 2017 -- DeHon
37

Conditionals

•  Only have one instruction
– Cannot perform separate operations on

each ALU in datapath

Penn ESE532 Spring 2017 -- DeHon
38

Conditionals

•  Only have one Program Counter
– Cannot implement conditional via

branching
•  Only have one instruction

– Cannot perform separate operations on
each ALU in datapath

•  Must perform an invariant operation
sequence

Penn ESE532 Spring 2017 -- DeHon
39

Invariant Operation

•  If (a[i]<b[i])
–  then d[i]=a[i]+c[i]
–  else d[i]=b[i]+c[i]

•  What’s in each
register as go
through sequence?

1.  T1[i]=a[i]<b[i]
2.  T2[i]=-T1[i]
3.  T3[i]=~(T2[i])
4.  T2[i]=a[i] & T2[i]
5.  T3[i]=b[i] & T3[i]
6.  d[i]=c[i] + T2[i]
7.  d[i]=c[i] + T3[i]

Penn ESE532 Spring 2017 -- DeHon
40

Penn ESE534 Spring2016 -- DeHon
41

If!Mux Conversion
•  Can always transform into a data

independent sequence
•  Often convenient to think of IF’s as

Multiplexers
•  If (cond)

 o=a
•  else

 o=b

Predicated Operation

•  Many architectures
will provide a
predicated operation

•  Only perform
operation when
predicate matches
instruction

•  p[i]=a[i]<b[i]
•  p[i]: d[i]=c[i] + a[i]
•  ~p[i]: d[i]=c[i] + b[i]

Penn ESE532 Spring 2017 -- DeHon
42

8

Predicated Operation

•  What does this do to
instructions must be
issued?

•  What does this do to
efficiency?
–  Useful operations

performed per cycle

•  p[i]=a[i]<b[i]
•  p[i]: d[i]=c[i] + a[i]
•  ~p[i]: d[i]=c[i] + b[i]

Penn ESE532 Spring 2017 -- DeHon
43

Nested Conditionals

•  What happens with nested conditionals?

Penn ESE532 Spring 2017 -- DeHon
44

Dot Product

•  What happens when need a dot product?
•  res=0;
•  for (i=0;i<N;i++)

–  res+=a[i]*b[i]

Penn ESE532 Spring 2017 -- DeHon
45

Reduction

•  Common operations where want to
perform a combining operation to
reduce a vector to a scalar
– Sum values in vector
– AND, OR

•  Reduce Operation

Penn ESE532 Spring 2017 -- DeHon
46

Reduce Tree

•  Efficiently handled with reduce tree

Penn ESE532 Spring 2017 -- DeHon
47

Reduce in Pipeline

•  Comes almost for
free in pipeline

Penn ESE532 Spring 2017 -- DeHon
48

9

Vector Reduce Instruction

•  Usually include support for vector
reduce operation
– Doesn’t need to add much to delay
– Maybe even faster than performing larger

operation
•  8 16x16 multiplies with sum reduce

less complex than one 128x128 multiply
•  …can exploit datapath of larger operation

Penn ESE532 Spring 2017 -- DeHon
49

Dot Product Revisited

•  With 3 cycle
pipelined multiply

•  What happens if try
to implement dot
product as:
–  MPY R0, R4, R14
–  ADD R14, R15, R15
–  MPY R1, R5, R14
–  ADD R14, R15, R15
–  …

•  for (i=0;i<N;i++)
–  res+=a[i]*b[i]

•  a in R0—R4
•  b in R4—R7

Penn ESE532 Spring 2017 -- DeHon
50

Dot Product Revisited

•  How should order
(reformulate)
instructions
exploiting data-level
parallelism?

•  for (i=0;i<N;i++)
–  res+=a[i]*b[i]

•  a in R0—R4
•  b in R4—R7

Penn ESE532 Spring 2017 -- DeHon
51

Pipelined Vector Units

•  Will get both pipelining and parallel
vector lanes

•  Exploit data-level parallelism for both

Penn ESE532 Spring 2017 -- DeHon
52

Neon

Penn ESE532 Spring 2017 -- DeHon
53

Penn ESE532 Spring 2017 -- DeHon
54

10

Neon Vector

•  128b wide register file, 16 registers
•  Support

– 2x64b
– 4x32b (also Single-Precision Float)
– 8x16b
– 16x8b

Penn ESE532 Spring 2017 -- DeHon
55

Sample Instructions

•  VADD – basic vector
•  VCEQ – compare equal

– Sets to all 0s or 1s, useful for masking
•  VMIN – avoid using if’s
•  VMLA – accumulating multiply
•  VPADAL – maybe useful for reduce
•  VEXT – for “shifting” vector alignment
•  VLDn – deinterleaving load

Penn ESE532 Spring 2017 -- DeHon
56

Neon Notes

•  Didn’t see
– Vector-wide reduce operation
– Conditionals within vector lanes

•  Do need to think about operations being
pipelined within lanes

Penn ESE532 Spring 2017 -- DeHon
57

Big Ideas
•  Data Parallelism easy basis for

decomposition
•  Data Parallel architectures can be

compact – pack more computations
onto a chip
– SIMD, Pipelined
– Benefit by sharing (instructions)
– Performance can be brittle

•  Drop from peak as mismatch
Penn ESE532 Spring 2017 -- DeHon

58

Admin
•  Reading for Day 5 on web
•  Talk on Thursday by Ed Lee (UCB)

– 3pm in Wu and Chen
•  HW2 due Friday
•  HW3 out (soon…)

– Different partners

Penn ESE532 Spring 2017 -- DeHon
59

